Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Hystoc: Obtaining Word Confidences for Fusion of End-To-End ASR Systems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F24%3APU152209" target="_blank" >RIV/00216305:26230/24:PU152209 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10446739" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10446739</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICASSP48485.2024.10446739" target="_blank" >10.1109/ICASSP48485.2024.10446739</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Hystoc: Obtaining Word Confidences for Fusion of End-To-End ASR Systems

  • Popis výsledku v původním jazyce

    End-to-end (e2e) systems have recently gained wide popularity in automatic speech recognition. However, these systems do generally not provide well-calibrated word-level confidences. In this paper, we propose Hystoc, a simple method for obtaining word-level confidences from hypothesis-level scores. Hystoc is an iterative alignment procedure which turns hypotheses from an n-best output of the ASR system into a confusion network. Eventually, word-level confidences are obtained as posterior probabilities in the individual bins of the confusion network. We show that Hystoc provides confidences that correlate well with the accuracy of the ASR hypothesis. Furthermore, we show that utilizing Hystoc in fusion of multiple e2e ASR systems increases the gains from the fusion by up to 1% WER absolute on Spanish RTVE2020 dataset. Finally, we experiment with using Hystoc for direct fusion of n-best outputs from multiple systems, but we only achieve minor gains when fusing very similar systems.

  • Název v anglickém jazyce

    Hystoc: Obtaining Word Confidences for Fusion of End-To-End ASR Systems

  • Popis výsledku anglicky

    End-to-end (e2e) systems have recently gained wide popularity in automatic speech recognition. However, these systems do generally not provide well-calibrated word-level confidences. In this paper, we propose Hystoc, a simple method for obtaining word-level confidences from hypothesis-level scores. Hystoc is an iterative alignment procedure which turns hypotheses from an n-best output of the ASR system into a confusion network. Eventually, word-level confidences are obtained as posterior probabilities in the individual bins of the confusion network. We show that Hystoc provides confidences that correlate well with the accuracy of the ASR hypothesis. Furthermore, we show that utilizing Hystoc in fusion of multiple e2e ASR systems increases the gains from the fusion by up to 1% WER absolute on Spanish RTVE2020 dataset. Finally, we experiment with using Hystoc for direct fusion of n-best outputs from multiple systems, but we only achieve minor gains when fusing very similar systems.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings

  • ISBN

    979-8-3503-4485-1

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    11276-11280

  • Název nakladatele

    IEEE Signal Processing Society

  • Místo vydání

    Seoul

  • Místo konání akce

    Seoul

  • Datum konání akce

    14. 4. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku