On Sensitivity of Learning with Limited Labelled Data to the Effects of Randomness: Impact of Interactions and Systematic Choices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F24%3APU154576" target="_blank" >RIV/00216305:26230/24:PU154576 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Sensitivity of Learning with Limited Labelled Data to the Effects of Randomness: Impact of Interactions and Systematic Choices
Popis výsledku v původním jazyce
While learning with limited labelled data can effectively deal with a lack of labels, it is also sensitive to the effects of uncontrolled randomness introduced by so-called randomness factors (i.e., non-deterministic decisions such as choice or order of samples). We propose and formalise a method to systematically investigate the effects of individual randomness factors while taking the interactions (dependence) between them into consideration. To this end, our method mitigates the effects of other factors while observing how the performance varies across multiple runs. Applying our method to multiple randomness factors across in-context learning and fine-tuning approaches on 7 representative text classification tasks and meta-learning on 3 tasks, we show that: 1) disregarding interactions between randomness factors in existing works led to inconsistent findings due to incorrect attribution of the effects of randomness factors, such as disproving the consistent sensitivity of in-context le
Název v anglickém jazyce
On Sensitivity of Learning with Limited Labelled Data to the Effects of Randomness: Impact of Interactions and Systematic Choices
Popis výsledku anglicky
While learning with limited labelled data can effectively deal with a lack of labels, it is also sensitive to the effects of uncontrolled randomness introduced by so-called randomness factors (i.e., non-deterministic decisions such as choice or order of samples). We propose and formalise a method to systematically investigate the effects of individual randomness factors while taking the interactions (dependence) between them into consideration. To this end, our method mitigates the effects of other factors while observing how the performance varies across multiple runs. Applying our method to multiple randomness factors across in-context learning and fine-tuning approaches on 7 representative text classification tasks and meta-learning on 3 tasks, we show that: 1) disregarding interactions between randomness factors in existing works led to inconsistent findings due to incorrect attribution of the effects of randomness factors, such as disproving the consistent sensitivity of in-context le
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů