Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Batch Active Learning for Text Classification and Sentiment Analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00360609" target="_blank" >RIV/68407700:21230/22:00360609 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1145/3562007.3562028" target="_blank" >https://doi.org/10.1145/3562007.3562028</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3562007.3562028" target="_blank" >10.1145/3562007.3562028</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Batch Active Learning for Text Classification and Sentiment Analysis

  • Popis výsledku v původním jazyce

    Supervised learning of classifiers for text classification and sentiment analysis relies on the availability of labels that may be either difficult or expensive to obtain. A standard procedure is to add labels to the training dataset sequentially by querying an annotator until the model reaches a satisfactory performance. Active learning is a process that optimizes unlabeled data records selection for which the knowledge of the label would bring the highest discriminability of the dataset. Batch active learning is a generalization of a single instance active learning by selecting a batch of documents for labeling. This task is much more demanding because plenty of different factors come into consideration (i. e. batch size, batch evaluation, etc.). In this paper, we provide a large scale study by decomposing the existing algorithms into building blocks and systematically comparing meaningful combinations of these blocks with a subsequent evaluation on different text datasets. While each block is known (warm start weights initialization, Dropout MC, entropy sampling, etc.), many of their combinations like Bayesian strategies with agglomerative clustering are first proposed in our paper with excellent performance. Particularly, our extension of the warm start method to batch active learning is among the top performing strategies on all datasets. We studied the effect of this proposal comparing the outcomes of varying distinct factors of an active learning algorithm. Some of these factors include initialization of the algorithm, uncertainty representation, acquisition function, and batch selection strategy. Further, various combinations of these are tested on selected NLP problems with documents encoded using RoBERTa embeddings. Datasets cover context integrity (Gibberish Wackerow), fake news detection (Kaggle Fake News Detection), categorization of short texts by emotional context (Twitter Sentiment140), and sentiment classification (Amazon Reviews). Ultimately, we show that each of the active learning factors has advantages for certain datasets or experimental settings.

  • Název v anglickém jazyce

    Batch Active Learning for Text Classification and Sentiment Analysis

  • Popis výsledku anglicky

    Supervised learning of classifiers for text classification and sentiment analysis relies on the availability of labels that may be either difficult or expensive to obtain. A standard procedure is to add labels to the training dataset sequentially by querying an annotator until the model reaches a satisfactory performance. Active learning is a process that optimizes unlabeled data records selection for which the knowledge of the label would bring the highest discriminability of the dataset. Batch active learning is a generalization of a single instance active learning by selecting a batch of documents for labeling. This task is much more demanding because plenty of different factors come into consideration (i. e. batch size, batch evaluation, etc.). In this paper, we provide a large scale study by decomposing the existing algorithms into building blocks and systematically comparing meaningful combinations of these blocks with a subsequent evaluation on different text datasets. While each block is known (warm start weights initialization, Dropout MC, entropy sampling, etc.), many of their combinations like Bayesian strategies with agglomerative clustering are first proposed in our paper with excellent performance. Particularly, our extension of the warm start method to batch active learning is among the top performing strategies on all datasets. We studied the effect of this proposal comparing the outcomes of varying distinct factors of an active learning algorithm. Some of these factors include initialization of the algorithm, uncertainty representation, acquisition function, and batch selection strategy. Further, various combinations of these are tested on selected NLP problems with documents encoded using RoBERTa embeddings. Datasets cover context integrity (Gibberish Wackerow), fake news detection (Kaggle Fake News Detection), categorization of short texts by emotional context (Twitter Sentiment140), and sentiment classification (Amazon Reviews). Ultimately, we show that each of the active learning factors has advantages for certain datasets or experimental settings.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TL05000057" target="_blank" >TL05000057: Signál a šum v éře Žurnalistiky 5.0 - komparativní perspektiva novinářských žánrů automatizovaných obsahů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    CCRIS '22: Proceedings of the 2022 3rd International Conference on Control, Robotics and Intelligent System

  • ISBN

    978-1-4503-9685-1

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    111-116

  • Název nakladatele

    Association for Computing Machinery

  • Místo vydání

    New York

  • Místo konání akce

    Virtual Event

  • Datum konání akce

    26. 8. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku