Batch Active Learning for Text Classification and Sentiment Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00360609" target="_blank" >RIV/68407700:21230/22:00360609 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1145/3562007.3562028" target="_blank" >https://doi.org/10.1145/3562007.3562028</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3562007.3562028" target="_blank" >10.1145/3562007.3562028</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Batch Active Learning for Text Classification and Sentiment Analysis
Popis výsledku v původním jazyce
Supervised learning of classifiers for text classification and sentiment analysis relies on the availability of labels that may be either difficult or expensive to obtain. A standard procedure is to add labels to the training dataset sequentially by querying an annotator until the model reaches a satisfactory performance. Active learning is a process that optimizes unlabeled data records selection for which the knowledge of the label would bring the highest discriminability of the dataset. Batch active learning is a generalization of a single instance active learning by selecting a batch of documents for labeling. This task is much more demanding because plenty of different factors come into consideration (i. e. batch size, batch evaluation, etc.). In this paper, we provide a large scale study by decomposing the existing algorithms into building blocks and systematically comparing meaningful combinations of these blocks with a subsequent evaluation on different text datasets. While each block is known (warm start weights initialization, Dropout MC, entropy sampling, etc.), many of their combinations like Bayesian strategies with agglomerative clustering are first proposed in our paper with excellent performance. Particularly, our extension of the warm start method to batch active learning is among the top performing strategies on all datasets. We studied the effect of this proposal comparing the outcomes of varying distinct factors of an active learning algorithm. Some of these factors include initialization of the algorithm, uncertainty representation, acquisition function, and batch selection strategy. Further, various combinations of these are tested on selected NLP problems with documents encoded using RoBERTa embeddings. Datasets cover context integrity (Gibberish Wackerow), fake news detection (Kaggle Fake News Detection), categorization of short texts by emotional context (Twitter Sentiment140), and sentiment classification (Amazon Reviews). Ultimately, we show that each of the active learning factors has advantages for certain datasets or experimental settings.
Název v anglickém jazyce
Batch Active Learning for Text Classification and Sentiment Analysis
Popis výsledku anglicky
Supervised learning of classifiers for text classification and sentiment analysis relies on the availability of labels that may be either difficult or expensive to obtain. A standard procedure is to add labels to the training dataset sequentially by querying an annotator until the model reaches a satisfactory performance. Active learning is a process that optimizes unlabeled data records selection for which the knowledge of the label would bring the highest discriminability of the dataset. Batch active learning is a generalization of a single instance active learning by selecting a batch of documents for labeling. This task is much more demanding because plenty of different factors come into consideration (i. e. batch size, batch evaluation, etc.). In this paper, we provide a large scale study by decomposing the existing algorithms into building blocks and systematically comparing meaningful combinations of these blocks with a subsequent evaluation on different text datasets. While each block is known (warm start weights initialization, Dropout MC, entropy sampling, etc.), many of their combinations like Bayesian strategies with agglomerative clustering are first proposed in our paper with excellent performance. Particularly, our extension of the warm start method to batch active learning is among the top performing strategies on all datasets. We studied the effect of this proposal comparing the outcomes of varying distinct factors of an active learning algorithm. Some of these factors include initialization of the algorithm, uncertainty representation, acquisition function, and batch selection strategy. Further, various combinations of these are tested on selected NLP problems with documents encoded using RoBERTa embeddings. Datasets cover context integrity (Gibberish Wackerow), fake news detection (Kaggle Fake News Detection), categorization of short texts by emotional context (Twitter Sentiment140), and sentiment classification (Amazon Reviews). Ultimately, we show that each of the active learning factors has advantages for certain datasets or experimental settings.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/TL05000057" target="_blank" >TL05000057: Signál a šum v éře Žurnalistiky 5.0 - komparativní perspektiva novinářských žánrů automatizovaných obsahů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CCRIS '22: Proceedings of the 2022 3rd International Conference on Control, Robotics and Intelligent System
ISBN
978-1-4503-9685-1
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
111-116
Název nakladatele
Association for Computing Machinery
Místo vydání
New York
Místo konání akce
Virtual Event
Datum konání akce
26. 8. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—