Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Active Learning for Text Classification and Fake News Detection

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00351077" target="_blank" >RIV/68407700:21230/21:00351077 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9644290" target="_blank" >https://ieeexplore.ieee.org/document/9644290</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ISCSIC54682.2021.00027" target="_blank" >10.1109/ISCSIC54682.2021.00027</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Active Learning for Text Classification and Fake News Detection

  • Popis výsledku v původním jazyce

    Supervised classification of texts relies on the availability of reliable class labels for the training data. However, the process of collecting data labels can be complex and costly. A standard procedure is to add labels sequentially by querying an annotator until reaching satisfactory performance. Active learning is a process of selecting unlabeled data records for which the knowledge of the label would bring the highest discriminability of the dataset. In this paper, we provide a comparative study of various active learning strategies for different embeddings of the text on various datasets. We focus on Bayesian active learning methods that are used due to their ability to represent the uncertainty of the classification procedure. We compare three types of uncertainty representation: i) SGLD, ii) Dropout, and iii) deep ensembles. The latter two methods in cold- and warm-start versions. The texts were embedded using Fast Text, LASER, and RoBERTa encoding techniques. The methods are tested on two types of datasets, text categorization (Kaggle News Category and Twitter Sentiment140 dataset) and fake news detection (Kaggle Fake News and Fake News Detection datasets). We show that the conventional dropout Monte Carlo approach provides good results for the majority of the tasks. The ensemble methods provide more accurate representation of uncertainty that allows to keep the pace of learning of a complicated problem for the growing number of requests, outperforming the dropout in the long run. However, for the majority of the datasets the active strategy using Dropout MC and Deep Ensembles achieved almost perfect performance even for a very low number of requests. The best results were obtained for the most recent embeddings RoBERTa

  • Název v anglickém jazyce

    Active Learning for Text Classification and Fake News Detection

  • Popis výsledku anglicky

    Supervised classification of texts relies on the availability of reliable class labels for the training data. However, the process of collecting data labels can be complex and costly. A standard procedure is to add labels sequentially by querying an annotator until reaching satisfactory performance. Active learning is a process of selecting unlabeled data records for which the knowledge of the label would bring the highest discriminability of the dataset. In this paper, we provide a comparative study of various active learning strategies for different embeddings of the text on various datasets. We focus on Bayesian active learning methods that are used due to their ability to represent the uncertainty of the classification procedure. We compare three types of uncertainty representation: i) SGLD, ii) Dropout, and iii) deep ensembles. The latter two methods in cold- and warm-start versions. The texts were embedded using Fast Text, LASER, and RoBERTa encoding techniques. The methods are tested on two types of datasets, text categorization (Kaggle News Category and Twitter Sentiment140 dataset) and fake news detection (Kaggle Fake News and Fake News Detection datasets). We show that the conventional dropout Monte Carlo approach provides good results for the majority of the tasks. The ensemble methods provide more accurate representation of uncertainty that allows to keep the pace of learning of a complicated problem for the growing number of requests, outperforming the dropout in the long run. However, for the majority of the datasets the active strategy using Dropout MC and Deep Ensembles achieved almost perfect performance even for a very low number of requests. The best results were obtained for the most recent embeddings RoBERTa

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2021 International Symposium on Computer Science and Intelligent Controls (ISCSIC)

  • ISBN

    978-1-6654-1627-6

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    87-94

  • Název nakladatele

    IEEE Computer Society

  • Místo vydání

    Los Alamitos

  • Místo konání akce

    Řím

  • Datum konání akce

    12. 2. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku