DeepFND: an ensemble-based deep learning approach for the optimization and improvement of fake news detection in digital platform
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50020963" target="_blank" >RIV/62690094:18470/23:50020963 - isvavai.cz</a>
Výsledek na webu
<a href="https://peerj.com/articles/cs-1666/" target="_blank" >https://peerj.com/articles/cs-1666/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7717/peerj-cs.1666" target="_blank" >10.7717/peerj-cs.1666</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
DeepFND: an ensemble-based deep learning approach for the optimization and improvement of fake news detection in digital platform
Popis výsledku v původním jazyce
Early identification of false news is now essential to save lives from the dangers posed by its spread. People keep sharing false information even after it has been debunked. Those responsible for spreading misleading information in the first place should face the consequences, not the victims of their actions. Understanding how misinformation travels and how to stop it is an absolute need for society and government. Consequently, the necessity to identify false news from genuine stories has emerged with the rise of these social media platforms. One of the tough issues of conventional methodologies is identifying false news. In recent years, neural network models' performance has surpassed that of classic machine learning approaches because of their superior feature extraction. This research presents Deep learningbased Fake News Detection (DeepFND). This technique has Visual Geometry Group 19 (VGG-19) and Bidirectional Long Short Term Memory (Bi-LSTM) ensemble models for identifying misinformation spread through social media. This system uses an ensemble deep learning (DL) strategy to extract characteristics from the article's text and photos. The joint feature extractor and the attention modules are used with an ensemble approach, including pre-training and fine-tuning phases. In this article, we utilized a unique customized loss function. In this research, we look at methods for detecting bogus news on the internet without human intervention. We used the Weibo, liar, PHEME, fake and real news, and Buzzfeed datasets to analyze fake and real news. Multiple methods for identifying fake news are compared and contrasted. Precision procedures have been used to calculate the proposed model's output. The model's 99.88% accuracy is better than expected.
Název v anglickém jazyce
DeepFND: an ensemble-based deep learning approach for the optimization and improvement of fake news detection in digital platform
Popis výsledku anglicky
Early identification of false news is now essential to save lives from the dangers posed by its spread. People keep sharing false information even after it has been debunked. Those responsible for spreading misleading information in the first place should face the consequences, not the victims of their actions. Understanding how misinformation travels and how to stop it is an absolute need for society and government. Consequently, the necessity to identify false news from genuine stories has emerged with the rise of these social media platforms. One of the tough issues of conventional methodologies is identifying false news. In recent years, neural network models' performance has surpassed that of classic machine learning approaches because of their superior feature extraction. This research presents Deep learningbased Fake News Detection (DeepFND). This technique has Visual Geometry Group 19 (VGG-19) and Bidirectional Long Short Term Memory (Bi-LSTM) ensemble models for identifying misinformation spread through social media. This system uses an ensemble deep learning (DL) strategy to extract characteristics from the article's text and photos. The joint feature extractor and the attention modules are used with an ensemble approach, including pre-training and fine-tuning phases. In this article, we utilized a unique customized loss function. In this research, we look at methods for detecting bogus news on the internet without human intervention. We used the Weibo, liar, PHEME, fake and real news, and Buzzfeed datasets to analyze fake and real news. Multiple methods for identifying fake news are compared and contrasted. Precision procedures have been used to calculate the proposed model's output. The model's 99.88% accuracy is better than expected.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PEERJ COMPUTER SCIENCE
ISSN
2376-5992
e-ISSN
2376-5992
Svazek periodika
9
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
25
Strana od-do
"Article Number: e1666"
Kód UT WoS článku
001120971000001
EID výsledku v databázi Scopus
—