Fake consumer review detection using deep neural networks integrating word embeddings and emotion mining
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F20%3A39916672" target="_blank" >RIV/00216275:25410/20:39916672 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00521-020-04757-2" target="_blank" >https://link.springer.com/article/10.1007/s00521-020-04757-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00521-020-04757-2" target="_blank" >10.1007/s00521-020-04757-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fake consumer review detection using deep neural networks integrating word embeddings and emotion mining
Popis výsledku v původním jazyce
Fake consumer review detection has attracted much interest in recent years owing to the increasing number of Internet purchases. Existing approaches to detect fake consumer reviews use the review content, product and reviewer information and other features to detect fake reviews. However, as shown in recent studies, the semantic meaning of reviews might be particularly important for text classification. In addition, the emotions hidden in the reviews may represent another potential indicator of fake content. To improve the performance of fake review detection, here we propose two neural network models that integrate traditional bag-of-words as well as the word context and consumer emotions. Specifically, the models learn document-level representation by using three sets of features: (1) n-grams, (2) word embeddings and (3) various lexicon-based emotion indicators. Such a high-dimensional feature representation is used to classify fake reviews into four domains. To demonstrate the effectiveness of the presented detection systems, we compare their classification performance with several state-of-the-art methods for fake review detection. The proposed systems perform well on all datasets, irrespective of their sentiment polarity and product category.
Název v anglickém jazyce
Fake consumer review detection using deep neural networks integrating word embeddings and emotion mining
Popis výsledku anglicky
Fake consumer review detection has attracted much interest in recent years owing to the increasing number of Internet purchases. Existing approaches to detect fake consumer reviews use the review content, product and reviewer information and other features to detect fake reviews. However, as shown in recent studies, the semantic meaning of reviews might be particularly important for text classification. In addition, the emotions hidden in the reviews may represent another potential indicator of fake content. To improve the performance of fake review detection, here we propose two neural network models that integrate traditional bag-of-words as well as the word context and consumer emotions. Specifically, the models learn document-level representation by using three sets of features: (1) n-grams, (2) word embeddings and (3) various lexicon-based emotion indicators. Such a high-dimensional feature representation is used to classify fake reviews into four domains. To demonstrate the effectiveness of the presented detection systems, we compare their classification performance with several state-of-the-art methods for fake review detection. The proposed systems perform well on all datasets, irrespective of their sentiment polarity and product category.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-15498S" target="_blank" >GA19-15498S: Modelování emocí ve verbální a neverbální manažerské komunikaci pro predikci podnikových finančních rizik</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Computing and Applications
ISSN
0941-0643
e-ISSN
—
Svazek periodika
32
Číslo periodika v rámci svazku
23
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
17259-17274
Kód UT WoS článku
000510362100001
EID výsledku v databázi Scopus
2-s2.0-85078922732