Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Fake consumer review detection using deep neural networks integrating word embeddings and emotion mining

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F20%3A39916672" target="_blank" >RIV/00216275:25410/20:39916672 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s00521-020-04757-2" target="_blank" >https://link.springer.com/article/10.1007/s00521-020-04757-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00521-020-04757-2" target="_blank" >10.1007/s00521-020-04757-2</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Fake consumer review detection using deep neural networks integrating word embeddings and emotion mining

  • Popis výsledku v původním jazyce

    Fake consumer review detection has attracted much interest in recent years owing to the increasing number of Internet purchases. Existing approaches to detect fake consumer reviews use the review content, product and reviewer information and other features to detect fake reviews. However, as shown in recent studies, the semantic meaning of reviews might be particularly important for text classification. In addition, the emotions hidden in the reviews may represent another potential indicator of fake content. To improve the performance of fake review detection, here we propose two neural network models that integrate traditional bag-of-words as well as the word context and consumer emotions. Specifically, the models learn document-level representation by using three sets of features: (1) n-grams, (2) word embeddings and (3) various lexicon-based emotion indicators. Such a high-dimensional feature representation is used to classify fake reviews into four domains. To demonstrate the effectiveness of the presented detection systems, we compare their classification performance with several state-of-the-art methods for fake review detection. The proposed systems perform well on all datasets, irrespective of their sentiment polarity and product category.

  • Název v anglickém jazyce

    Fake consumer review detection using deep neural networks integrating word embeddings and emotion mining

  • Popis výsledku anglicky

    Fake consumer review detection has attracted much interest in recent years owing to the increasing number of Internet purchases. Existing approaches to detect fake consumer reviews use the review content, product and reviewer information and other features to detect fake reviews. However, as shown in recent studies, the semantic meaning of reviews might be particularly important for text classification. In addition, the emotions hidden in the reviews may represent another potential indicator of fake content. To improve the performance of fake review detection, here we propose two neural network models that integrate traditional bag-of-words as well as the word context and consumer emotions. Specifically, the models learn document-level representation by using three sets of features: (1) n-grams, (2) word embeddings and (3) various lexicon-based emotion indicators. Such a high-dimensional feature representation is used to classify fake reviews into four domains. To demonstrate the effectiveness of the presented detection systems, we compare their classification performance with several state-of-the-art methods for fake review detection. The proposed systems perform well on all datasets, irrespective of their sentiment polarity and product category.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-15498S" target="_blank" >GA19-15498S: Modelování emocí ve verbální a neverbální manažerské komunikaci pro predikci podnikových finančních rizik</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Neural Computing and Applications

  • ISSN

    0941-0643

  • e-ISSN

  • Svazek periodika

    32

  • Číslo periodika v rámci svazku

    23

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    16

  • Strana od-do

    17259-17274

  • Kód UT WoS článku

    000510362100001

  • EID výsledku v databázi Scopus

    2-s2.0-85078922732