Mining behavioural and sentiment-dependent linguistic patterns from restaurant reviews for fake review detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F22%3A39919465" target="_blank" >RIV/00216275:25410/22:39919465 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0040162522000646" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0040162522000646</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.techfore.2022.121532" target="_blank" >10.1016/j.techfore.2022.121532</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mining behavioural and sentiment-dependent linguistic patterns from restaurant reviews for fake review detection
Popis výsledku v původním jazyce
Online reviews are increasingly recognized as a key source of information influencing consumer behavior. This in turn implies that competitive advantage can be achieved by manipulating users' perceptions about restaurants. The hospitality industry is particularly susceptible to this issue because products and services in this industry can only be rated upon consumption. Therefore, many efforts have recently been dedicated to developing automatic methods for detecting fake reviews based on data intelligence in this sector. Recent studies suggest that both the semantic meaning of consumer reviews and the sentiment conveyed may be useful indicators of fake reviews. However, the semantic meaning may be context-sensitive and may also disregard sentiment information. Moreover, the content analysis approach should be integrated with the reviewer's behavior to reveal their true intentions. To address these problems, we propose a review representation model based on behavioural and sentiment-dependent linguistic features that effectively exploit the domain context. Using a large dataset of Yelp restaurant reviews, we demonstrate that the proposed review representation model is more effective than existing approaches in terms of detection accuracy. It furthermore accurately estimates the average rating assigned by legitimate reviewers, which has significant managerial implications for the hospitality industry.
Název v anglickém jazyce
Mining behavioural and sentiment-dependent linguistic patterns from restaurant reviews for fake review detection
Popis výsledku anglicky
Online reviews are increasingly recognized as a key source of information influencing consumer behavior. This in turn implies that competitive advantage can be achieved by manipulating users' perceptions about restaurants. The hospitality industry is particularly susceptible to this issue because products and services in this industry can only be rated upon consumption. Therefore, many efforts have recently been dedicated to developing automatic methods for detecting fake reviews based on data intelligence in this sector. Recent studies suggest that both the semantic meaning of consumer reviews and the sentiment conveyed may be useful indicators of fake reviews. However, the semantic meaning may be context-sensitive and may also disregard sentiment information. Moreover, the content analysis approach should be integrated with the reviewer's behavior to reveal their true intentions. To address these problems, we propose a review representation model based on behavioural and sentiment-dependent linguistic features that effectively exploit the domain context. Using a large dataset of Yelp restaurant reviews, we demonstrate that the proposed review representation model is more effective than existing approaches in terms of detection accuracy. It furthermore accurately estimates the average rating assigned by legitimate reviewers, which has significant managerial implications for the hospitality industry.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50204 - Business and management
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-15498S" target="_blank" >GA19-15498S: Modelování emocí ve verbální a neverbální manažerské komunikaci pro predikci podnikových finančních rizik</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Technological Forecasting and Social Change
ISSN
0040-1625
e-ISSN
1873-5509
Svazek periodika
177
Číslo periodika v rámci svazku
Neuveden
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
121532
Kód UT WoS článku
000827438400012
EID výsledku v databázi Scopus
2-s2.0-85123781663