Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Mining behavioural and sentiment-dependent linguistic patterns from restaurant reviews for fake review detection

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F22%3A39919465" target="_blank" >RIV/00216275:25410/22:39919465 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0040162522000646" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0040162522000646</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.techfore.2022.121532" target="_blank" >10.1016/j.techfore.2022.121532</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Mining behavioural and sentiment-dependent linguistic patterns from restaurant reviews for fake review detection

  • Popis výsledku v původním jazyce

    Online reviews are increasingly recognized as a key source of information influencing consumer behavior. This in turn implies that competitive advantage can be achieved by manipulating users&apos; perceptions about restaurants. The hospitality industry is particularly susceptible to this issue because products and services in this industry can only be rated upon consumption. Therefore, many efforts have recently been dedicated to developing automatic methods for detecting fake reviews based on data intelligence in this sector. Recent studies suggest that both the semantic meaning of consumer reviews and the sentiment conveyed may be useful indicators of fake reviews. However, the semantic meaning may be context-sensitive and may also disregard sentiment information. Moreover, the content analysis approach should be integrated with the reviewer&apos;s behavior to reveal their true intentions. To address these problems, we propose a review representation model based on behavioural and sentiment-dependent linguistic features that effectively exploit the domain context. Using a large dataset of Yelp restaurant reviews, we demonstrate that the proposed review representation model is more effective than existing approaches in terms of detection accuracy. It furthermore accurately estimates the average rating assigned by legitimate reviewers, which has significant managerial implications for the hospitality industry.

  • Název v anglickém jazyce

    Mining behavioural and sentiment-dependent linguistic patterns from restaurant reviews for fake review detection

  • Popis výsledku anglicky

    Online reviews are increasingly recognized as a key source of information influencing consumer behavior. This in turn implies that competitive advantage can be achieved by manipulating users&apos; perceptions about restaurants. The hospitality industry is particularly susceptible to this issue because products and services in this industry can only be rated upon consumption. Therefore, many efforts have recently been dedicated to developing automatic methods for detecting fake reviews based on data intelligence in this sector. Recent studies suggest that both the semantic meaning of consumer reviews and the sentiment conveyed may be useful indicators of fake reviews. However, the semantic meaning may be context-sensitive and may also disregard sentiment information. Moreover, the content analysis approach should be integrated with the reviewer&apos;s behavior to reveal their true intentions. To address these problems, we propose a review representation model based on behavioural and sentiment-dependent linguistic features that effectively exploit the domain context. Using a large dataset of Yelp restaurant reviews, we demonstrate that the proposed review representation model is more effective than existing approaches in terms of detection accuracy. It furthermore accurately estimates the average rating assigned by legitimate reviewers, which has significant managerial implications for the hospitality industry.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50204 - Business and management

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-15498S" target="_blank" >GA19-15498S: Modelování emocí ve verbální a neverbální manažerské komunikaci pro predikci podnikových finančních rizik</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Technological Forecasting and Social Change

  • ISSN

    0040-1625

  • e-ISSN

    1873-5509

  • Svazek periodika

    177

  • Číslo periodika v rámci svazku

    Neuveden

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

    121532

  • Kód UT WoS článku

    000827438400012

  • EID výsledku v databázi Scopus

    2-s2.0-85123781663