Opinion mining of consumer reviews using deep neural networks with word-sentiment associations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F20%3A39916681" target="_blank" >RIV/00216275:25410/20:39916681 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-49161-1_35" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-49161-1_35</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-49161-1_35" target="_blank" >10.1007/978-3-030-49161-1_35</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Opinion mining of consumer reviews using deep neural networks with word-sentiment associations
Popis výsledku v původním jazyce
Automated opinion mining of consumer reviews is becoming increasingly important due to the rising influence of reviews on online retail shopping. Existing approaches to automated opinion classification rely either on sentiment lexicons or supervised machine learning. Deep neural networks perform this classification task particularly well by utilizing dense document representation in terms of word embeddings. However, this representation model does not consider the sentiment polarity or sentiment intensity of the words. To overcome this problem, we propose a novel model of deep neural network with word-sentiment associations. This model produces richer document representation that incorporates both word context and word sentiment. Specifically, our model utilizes pre-trained word embeddings and lexicon-based sentiment indicators to provide inputs to a deep feed-forward neural network. To verify the effectiveness of the proposed model, a benchmark dataset of Amazon reviews is used. Our results strongly support integrated document representation, which shows that the proposed model outperforms other existing machine learning approaches to opinion mining of consumer reviews.
Název v anglickém jazyce
Opinion mining of consumer reviews using deep neural networks with word-sentiment associations
Popis výsledku anglicky
Automated opinion mining of consumer reviews is becoming increasingly important due to the rising influence of reviews on online retail shopping. Existing approaches to automated opinion classification rely either on sentiment lexicons or supervised machine learning. Deep neural networks perform this classification task particularly well by utilizing dense document representation in terms of word embeddings. However, this representation model does not consider the sentiment polarity or sentiment intensity of the words. To overcome this problem, we propose a novel model of deep neural network with word-sentiment associations. This model produces richer document representation that incorporates both word context and word sentiment. Specifically, our model utilizes pre-trained word embeddings and lexicon-based sentiment indicators to provide inputs to a deep feed-forward neural network. To verify the effectiveness of the proposed model, a benchmark dataset of Amazon reviews is used. Our results strongly support integrated document representation, which shows that the proposed model outperforms other existing machine learning approaches to opinion mining of consumer reviews.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-15498S" target="_blank" >GA19-15498S: Modelování emocí ve verbální a neverbální manažerské komunikaci pro predikci podnikových finančních rizik</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IFIP Advances in Information and Communication Technology. Vol. 583
ISBN
978-3-030-49160-4
ISSN
1868-4238
e-ISSN
—
Počet stran výsledku
11
Strana od-do
419-429
Název nakladatele
Springer
Místo vydání
Heidelberg
Místo konání akce
Neos Marmaras
Datum konání akce
5. 6. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—