Malicious URL Detection with Distributed Representation and Deep Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F22%3A50019518" target="_blank" >RIV/62690094:18450/22:50019518 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3233/FAIA220248" target="_blank" >http://dx.doi.org/10.3233/FAIA220248</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/FAIA220248" target="_blank" >10.3233/FAIA220248</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Malicious URL Detection with Distributed Representation and Deep Learning
Popis výsledku v původním jazyce
There exist numerous solutions to detect malicious URLs based on Natural Language Processing and machine learning technologies. However, there is a lack of comparative analysis among approaches using distributed representation and deep learning. To solve this problem, this paper performs a comparative study on phishing URL detection based on text embedding and deep learning algorithms. Specifically, character-level and word-level embedding were combined to learn the feature representations from the webpage URLs. In addition, three deep learning models, including Convolutional Neural Network (CNN), Bidirectional Gated Recurrent Unit (BiGRU), and Bidirectional Long Short-Term Memory (BiLSTM), were constructed for effective classification of phishing websites. Several experiments were conducted and various evaluation metrics were used to assess the performance of these deep learning models. The findings obtained from the experiments indicated that the combination of the character-level and word-level embedding approach produced better results than the individual text representation methods. Also, the CNN-based model outperformed the other two deep learning algorithms in terms of both detection accuracy and execution time.
Název v anglickém jazyce
Malicious URL Detection with Distributed Representation and Deep Learning
Popis výsledku anglicky
There exist numerous solutions to detect malicious URLs based on Natural Language Processing and machine learning technologies. However, there is a lack of comparative analysis among approaches using distributed representation and deep learning. To solve this problem, this paper performs a comparative study on phishing URL detection based on text embedding and deep learning algorithms. Specifically, character-level and word-level embedding were combined to learn the feature representations from the webpage URLs. In addition, three deep learning models, including Convolutional Neural Network (CNN), Bidirectional Gated Recurrent Unit (BiGRU), and Bidirectional Long Short-Term Memory (BiLSTM), were constructed for effective classification of phishing websites. Several experiments were conducted and various evaluation metrics were used to assess the performance of these deep learning models. The findings obtained from the experiments indicated that the combination of the character-level and word-level embedding approach produced better results than the individual text representation methods. Also, the CNN-based model outperformed the other two deep learning algorithms in terms of both detection accuracy and execution time.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Frontiers in Artificial Intelligence and Applications
ISBN
978-1-64368-316-4
ISSN
0922-6389
e-ISSN
1535-6698
Počet stran výsledku
10
Strana od-do
171-180
Název nakladatele
IOS Press BV
Místo vydání
Amsterdam
Místo konání akce
Kitakyushu
Datum konání akce
20. 9. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—