Detecting Phishing URLs With Word Embedding and Deep Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020570" target="_blank" >RIV/62690094:18450/23:50020570 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4018/978-1-6684-7684-0.ch011" target="_blank" >http://dx.doi.org/10.4018/978-1-6684-7684-0.ch011</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4018/978-1-6684-7684-0.ch011" target="_blank" >10.4018/978-1-6684-7684-0.ch011</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detecting Phishing URLs With Word Embedding and Deep Learning
Popis výsledku v původním jazyce
learning in the phishing detection domain. However, there needs to be more research on word embeddingand deep learning for malicious URL classification. Inspired to solve this problem, this chapter aims toexamine the application of word embedding and deep learning in extracting features from website URLs.To achieve this, several word embedding techniques, such as Keras, Word2Vec, GloVe, and FastText,were used to learn feature representations of webpage URLs. The obtained feature vectors were fed intoa deep-learning model based on CNN-BiGRU for extraction and classification. Two different datasetswere used to conduct numerous experiments, while various metrics were utilized to evaluate the phishingdetection model’s performance. The obtained findings indicated that when combined with deep learning,Keras outperformed other text embedding methods and achieved the best results across all evaluationmetrics on both datasets.
Název v anglickém jazyce
Detecting Phishing URLs With Word Embedding and Deep Learning
Popis výsledku anglicky
learning in the phishing detection domain. However, there needs to be more research on word embeddingand deep learning for malicious URL classification. Inspired to solve this problem, this chapter aims toexamine the application of word embedding and deep learning in extracting features from website URLs.To achieve this, several word embedding techniques, such as Keras, Word2Vec, GloVe, and FastText,were used to learn feature representations of webpage URLs. The obtained feature vectors were fed intoa deep-learning model based on CNN-BiGRU for extraction and classification. Two different datasetswere used to conduct numerous experiments, while various metrics were utilized to evaluate the phishingdetection model’s performance. The obtained findings indicated that when combined with deep learning,Keras outperformed other text embedding methods and achieved the best results across all evaluationmetrics on both datasets.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Perspectives and Considerations on the Evolution of Smart Systems
ISBN
978-1-66847-684-0
Počet stran výsledku
24
Strana od-do
296-319
Počet stran knihy
419
Název nakladatele
IGI Global
Místo vydání
Hershey
Kód UT WoS kapitoly
—