Transformer-Based Model for Malicious URL Classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50021325" target="_blank" >RIV/62690094:18450/23:50021325 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/ICOCO59262.2023.10397705" target="_blank" >http://dx.doi.org/10.1109/ICOCO59262.2023.10397705</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICOCO59262.2023.10397705" target="_blank" >10.1109/ICOCO59262.2023.10397705</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Transformer-Based Model for Malicious URL Classification
Popis výsledku v původním jazyce
In recent years, cyber threats including malicious software, virus, spam, and phishing have grown aggressively via compromised Uniform Resource Locators (URLs). However, the current phishing URL detection solutions based on supervised learning use labeled data for training and classification, leading to the dependency on known attacking patterns. These approaches have limitations in fighting against evolving phishing tactics, resulting in a lack of robustness and sustainability. In this study, an unsupervised transformer model is proposed to address the drawbacks of the existing methods which use supervised learning to combat zero-day phishing attacks. Specifically, Bidirectional Encoder Representations from Transformers (BERT) is adopted in this paper to classify malicious URLs. The proposed model was trained on a public dataset and benchmarked with various baseline models using several performance metrics. Results obtained from the experiments showed that BERT-Medium achieved the highest detection accuracy of 98.55% among numerous transformer based models and outperformed other text embedding and deep learning techniques, indicating that the proposed solution is effective and robust in detecting phishing URLs. © 2023 IEEE.
Název v anglickém jazyce
Transformer-Based Model for Malicious URL Classification
Popis výsledku anglicky
In recent years, cyber threats including malicious software, virus, spam, and phishing have grown aggressively via compromised Uniform Resource Locators (URLs). However, the current phishing URL detection solutions based on supervised learning use labeled data for training and classification, leading to the dependency on known attacking patterns. These approaches have limitations in fighting against evolving phishing tactics, resulting in a lack of robustness and sustainability. In this study, an unsupervised transformer model is proposed to address the drawbacks of the existing methods which use supervised learning to combat zero-day phishing attacks. Specifically, Bidirectional Encoder Representations from Transformers (BERT) is adopted in this paper to classify malicious URLs. The proposed model was trained on a public dataset and benchmarked with various baseline models using several performance metrics. Results obtained from the experiments showed that BERT-Medium achieved the highest detection accuracy of 98.55% among numerous transformer based models and outperformed other text embedding and deep learning techniques, indicating that the proposed solution is effective and robust in detecting phishing URLs. © 2023 IEEE.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2023 IEEE International Conference on Computing, ICOCO 2023
ISBN
979-8-3503-0268-4
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
323-327
Název nakladatele
Institute of Electrical and Electronics Engineers Inc.
Místo vydání
New Jer
Místo konání akce
Langkawi
Datum konání akce
9. 10. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—