An Improved Ensemble Deep Learning Model Based on CNN for Malicious Website Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F22%3A50019440" target="_blank" >RIV/62690094:18450/22:50019440 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-031-08530-7_42" target="_blank" >http://dx.doi.org/10.1007/978-3-031-08530-7_42</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-08530-7_42" target="_blank" >10.1007/978-3-031-08530-7_42</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An Improved Ensemble Deep Learning Model Based on CNN for Malicious Website Detection
Popis výsledku v původním jazyce
A malicious website, also known as a phishing website, remains one of the major concerns in the cybersecurity domain. Among numerous deep learning-based solutions for phishing website detection, a Convolutional Neural Network (CNN) is one of the most popular techniques. However, when used as a stand-alone classifier, CNN still suffers from an accuracy deficiency issue. Therefore, the main objective of this paper is to explore the hybridization of CNN with another deep learning algorithm to address this problem. In this study, CNN was combined with Bidirectional Gated Recurrent Unit (BiGRU) to construct an ensemble model for malicious webpage classification. The performance of the proposed CNN-BiGRU model was evaluated against several deep learning approaches using the same dataset. The results indicated that the proposed CNN-BiGRU is a promising solution for malicious website detection. In addition, ensemble architectures outperformed single models as they joined the advantages and cured the disadvantages of individual deep learning algorithms. © 2022, Springer Nature Switzerland AG.
Název v anglickém jazyce
An Improved Ensemble Deep Learning Model Based on CNN for Malicious Website Detection
Popis výsledku anglicky
A malicious website, also known as a phishing website, remains one of the major concerns in the cybersecurity domain. Among numerous deep learning-based solutions for phishing website detection, a Convolutional Neural Network (CNN) is one of the most popular techniques. However, when used as a stand-alone classifier, CNN still suffers from an accuracy deficiency issue. Therefore, the main objective of this paper is to explore the hybridization of CNN with another deep learning algorithm to address this problem. In this study, CNN was combined with Bidirectional Gated Recurrent Unit (BiGRU) to construct an ensemble model for malicious webpage classification. The performance of the proposed CNN-BiGRU model was evaluated against several deep learning approaches using the same dataset. The results indicated that the proposed CNN-BiGRU is a promising solution for malicious website detection. In addition, ensemble architectures outperformed single models as they joined the advantages and cured the disadvantages of individual deep learning algorithms. © 2022, Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
978-3-031-08529-1
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
8
Strana od-do
497-504
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
Berlín
Místo konání akce
Kitakyushu
Datum konání akce
19. 7. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000876774100042