Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Phishing webpage classification via deep learning‐based algorithms: An empirical study

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50018426" target="_blank" >RIV/62690094:18450/21:50018426 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2076-3417/11/19/9210" target="_blank" >https://www.mdpi.com/2076-3417/11/19/9210</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/app11199210" target="_blank" >10.3390/app11199210</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Phishing webpage classification via deep learning‐based algorithms: An empirical study

  • Popis výsledku v původním jazyce

    Phishing detection with high‐performance accuracy and low computational complexity has always been a topic of great interest. New technologies have been developed to improve the phishing detection rate and reduce computational constraints in recent years. However, one solution is insufficient to address all problems caused by attackers in cyberspace. Therefore, the primary objective of this paper is to analyze the performance of various deep learning algorithms in detecting phishing activities. This analysis will help organizations or individuals select and adopt the proper solution according to their technological needs and specific applications’ requirements to fight against phishing attacks. In this regard, an empirical study was conducted using four different deep learning algorithms, including deep neural network (DNN), convolutional neural network (CNN), Long Short‐Term Memory (LSTM), and gated recurrent unit (GRU). To analyze the behav-iors of these deep learning architectures, extensive experiments were carried out to examine the impact of parameter tuning on the performance accuracy of the deep learning models. In addition, various performance metrics were measured to evaluate the effectiveness and feasibility of DL models in detecting phishing activities. The results obtained from the experiments showed that no single DL algorithm achieved the best measures across all performance metrics. The empirical findings from this paper also manifest several issues and suggest future research directions related to deep learning in the phishing detection domain. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

  • Název v anglickém jazyce

    Phishing webpage classification via deep learning‐based algorithms: An empirical study

  • Popis výsledku anglicky

    Phishing detection with high‐performance accuracy and low computational complexity has always been a topic of great interest. New technologies have been developed to improve the phishing detection rate and reduce computational constraints in recent years. However, one solution is insufficient to address all problems caused by attackers in cyberspace. Therefore, the primary objective of this paper is to analyze the performance of various deep learning algorithms in detecting phishing activities. This analysis will help organizations or individuals select and adopt the proper solution according to their technological needs and specific applications’ requirements to fight against phishing attacks. In this regard, an empirical study was conducted using four different deep learning algorithms, including deep neural network (DNN), convolutional neural network (CNN), Long Short‐Term Memory (LSTM), and gated recurrent unit (GRU). To analyze the behav-iors of these deep learning architectures, extensive experiments were carried out to examine the impact of parameter tuning on the performance accuracy of the deep learning models. In addition, various performance metrics were measured to evaluate the effectiveness and feasibility of DL models in detecting phishing activities. The results obtained from the experiments showed that no single DL algorithm achieved the best measures across all performance metrics. The empirical findings from this paper also manifest several issues and suggest future research directions related to deep learning in the phishing detection domain. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10406 - Analytical chemistry

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Sciences

  • ISSN

    2076-3417

  • e-ISSN

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    19

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    32

  • Strana od-do

    "Article number: 9210"

  • Kód UT WoS článku

    000707768100001

  • EID výsledku v databázi Scopus

    2-s2.0-85116365681