Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Neural networks with emotion associations, topic modeling and supervised term weighting for sentiment analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F21%3A39917730" target="_blank" >RIV/00216275:25410/21:39917730 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.worldscientific.com/doi/abs/10.1142/S0129065721500131" target="_blank" >https://www.worldscientific.com/doi/abs/10.1142/S0129065721500131</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/S0129065721500131" target="_blank" >10.1142/S0129065721500131</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Neural networks with emotion associations, topic modeling and supervised term weighting for sentiment analysis

  • Popis výsledku v původním jazyce

    Automated sentiment analysis is becoming increasingly recognized due to the growing importance of social media and e-commerce platform review websites. Deep neural networks outperform traditional lexicon-based and machine learning methods by effectively exploiting contextual word embeddings to generate dense document representation. However, this representation model is not fully adequate to capture topical semantics and the sentiment polarity of words. To overcome these problems, a novel sentiment analysis model is proposed that utilizes richer document representations of word-emotion associations and topic models, which is the main computational novelty of this study. The sentiment analysis model integrates word embeddings with lexicon-based sentiment and emotion indicators, including negations and emoticons, and to further improve its performance, a topic modeling component is utilized together with a bag-of-words model based on a supervised term weighting scheme. The effectiveness of the proposed model is evaluated using large datasets of Amazon product reviews and hotel reviews. Experimental results prove that the proposed document representation is valid for the sentiment analysis of product and hotel reviews, irrespective of their class imbalance. The results also show that the proposed model improves on existing machine learning methods.

  • Název v anglickém jazyce

    Neural networks with emotion associations, topic modeling and supervised term weighting for sentiment analysis

  • Popis výsledku anglicky

    Automated sentiment analysis is becoming increasingly recognized due to the growing importance of social media and e-commerce platform review websites. Deep neural networks outperform traditional lexicon-based and machine learning methods by effectively exploiting contextual word embeddings to generate dense document representation. However, this representation model is not fully adequate to capture topical semantics and the sentiment polarity of words. To overcome these problems, a novel sentiment analysis model is proposed that utilizes richer document representations of word-emotion associations and topic models, which is the main computational novelty of this study. The sentiment analysis model integrates word embeddings with lexicon-based sentiment and emotion indicators, including negations and emoticons, and to further improve its performance, a topic modeling component is utilized together with a bag-of-words model based on a supervised term weighting scheme. The effectiveness of the proposed model is evaluated using large datasets of Amazon product reviews and hotel reviews. Experimental results prove that the proposed document representation is valid for the sentiment analysis of product and hotel reviews, irrespective of their class imbalance. The results also show that the proposed model improves on existing machine learning methods.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-15498S" target="_blank" >GA19-15498S: Modelování emocí ve verbální a neverbální manažerské komunikaci pro predikci podnikových finančních rizik</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Neural Systems

  • ISSN

    0129-0657

  • e-ISSN

  • Svazek periodika

    31

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    SG - Singapurská republika

  • Počet stran výsledku

    18

  • Strana od-do

    2150013

  • Kód UT WoS článku

    000696596800004

  • EID výsledku v databázi Scopus

    2-s2.0-85100784177