Neural networks with emotion associations, topic modeling and supervised term weighting for sentiment analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F21%3A39917730" target="_blank" >RIV/00216275:25410/21:39917730 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.worldscientific.com/doi/abs/10.1142/S0129065721500131" target="_blank" >https://www.worldscientific.com/doi/abs/10.1142/S0129065721500131</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0129065721500131" target="_blank" >10.1142/S0129065721500131</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Neural networks with emotion associations, topic modeling and supervised term weighting for sentiment analysis
Popis výsledku v původním jazyce
Automated sentiment analysis is becoming increasingly recognized due to the growing importance of social media and e-commerce platform review websites. Deep neural networks outperform traditional lexicon-based and machine learning methods by effectively exploiting contextual word embeddings to generate dense document representation. However, this representation model is not fully adequate to capture topical semantics and the sentiment polarity of words. To overcome these problems, a novel sentiment analysis model is proposed that utilizes richer document representations of word-emotion associations and topic models, which is the main computational novelty of this study. The sentiment analysis model integrates word embeddings with lexicon-based sentiment and emotion indicators, including negations and emoticons, and to further improve its performance, a topic modeling component is utilized together with a bag-of-words model based on a supervised term weighting scheme. The effectiveness of the proposed model is evaluated using large datasets of Amazon product reviews and hotel reviews. Experimental results prove that the proposed document representation is valid for the sentiment analysis of product and hotel reviews, irrespective of their class imbalance. The results also show that the proposed model improves on existing machine learning methods.
Název v anglickém jazyce
Neural networks with emotion associations, topic modeling and supervised term weighting for sentiment analysis
Popis výsledku anglicky
Automated sentiment analysis is becoming increasingly recognized due to the growing importance of social media and e-commerce platform review websites. Deep neural networks outperform traditional lexicon-based and machine learning methods by effectively exploiting contextual word embeddings to generate dense document representation. However, this representation model is not fully adequate to capture topical semantics and the sentiment polarity of words. To overcome these problems, a novel sentiment analysis model is proposed that utilizes richer document representations of word-emotion associations and topic models, which is the main computational novelty of this study. The sentiment analysis model integrates word embeddings with lexicon-based sentiment and emotion indicators, including negations and emoticons, and to further improve its performance, a topic modeling component is utilized together with a bag-of-words model based on a supervised term weighting scheme. The effectiveness of the proposed model is evaluated using large datasets of Amazon product reviews and hotel reviews. Experimental results prove that the proposed document representation is valid for the sentiment analysis of product and hotel reviews, irrespective of their class imbalance. The results also show that the proposed model improves on existing machine learning methods.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-15498S" target="_blank" >GA19-15498S: Modelování emocí ve verbální a neverbální manažerské komunikaci pro predikci podnikových finančních rizik</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Neural Systems
ISSN
0129-0657
e-ISSN
—
Svazek periodika
31
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
18
Strana od-do
2150013
Kód UT WoS článku
000696596800004
EID výsledku v databázi Scopus
2-s2.0-85100784177