Sustainable sentiment analysis on E-commerce platforms using a weighted parallel hybrid deep learning approach for smart cities applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256461" target="_blank" >RIV/61989100:27240/24:10256461 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.nature.com/articles/s41598-024-78318-1" target="_blank" >https://www.nature.com/articles/s41598-024-78318-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-024-78318-1" target="_blank" >10.1038/s41598-024-78318-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sustainable sentiment analysis on E-commerce platforms using a weighted parallel hybrid deep learning approach for smart cities applications
Popis výsledku v původním jazyce
Sentiment analysis of several user evaluations on e-commerce platforms can be used to increase customer happiness. This method automatically extracts and identifies subjective data from product evaluations using natural language processing and machine learning methods. These statistics may eventually reveal information on the favourable, neutral, or negative attitudes of the consumer base. Due to its capacity to grasp the complex links between words and phrases in reviews as well as the emotions they imply, deep learning (DL) is very useful for SA tasks. A unique approach termed Weighted Parallel Hybrid Deep Learning-based Sentiment Analysis on E-Commerce Product Reviews is introduced by the proposed system. Accurately distinguishing between distinct sentiments found in online store reviews is the aim of the system technique. Additional data pre-processing processes are implemented within the system architecture to guarantee compatibility.
Název v anglickém jazyce
Sustainable sentiment analysis on E-commerce platforms using a weighted parallel hybrid deep learning approach for smart cities applications
Popis výsledku anglicky
Sentiment analysis of several user evaluations on e-commerce platforms can be used to increase customer happiness. This method automatically extracts and identifies subjective data from product evaluations using natural language processing and machine learning methods. These statistics may eventually reveal information on the favourable, neutral, or negative attitudes of the consumer base. Due to its capacity to grasp the complex links between words and phrases in reviews as well as the emotions they imply, deep learning (DL) is very useful for SA tasks. A unique approach termed Weighted Parallel Hybrid Deep Learning-based Sentiment Analysis on E-Commerce Product Reviews is introduced by the proposed system. Accurately distinguishing between distinct sentiments found in online store reviews is the aim of the system technique. Additional data pre-processing processes are implemented within the system architecture to guarantee compatibility.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Scientific Reports
ISSN
2045-2322
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
—
Kód UT WoS článku
001349432200067
EID výsledku v databázi Scopus
2-s2.0-85208493917