Speech production under stress for machine learning: multimodal dataset of 79 cases and 8 signals
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F24%3APU154759" target="_blank" >RIV/00216305:26230/24:PU154759 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14210/24:00137626
Výsledek na webu
<a href="https://www.nature.com/articles/s41597-024-03991-w" target="_blank" >https://www.nature.com/articles/s41597-024-03991-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41597-024-03991-w" target="_blank" >10.1038/s41597-024-03991-w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Speech production under stress for machine learning: multimodal dataset of 79 cases and 8 signals
Popis výsledku v původním jazyce
Early identification of cognitive or physical overload is critical in fields where human decision making matters when preventing threats to safety and property. Pilots, drivers, surgeons, and operators of nuclear plants are among those affected by this challenge, as acute stress can impair their cognition. In this context, the significance of paralinguistic automatic speech processing increases for early stress detection. The intensity, intonation, and cadence of an utterance are examples of paralinguistic traits that determine the meaning of a sentence and are often lost in the verbatim transcript. To address this issue, tools are being developed to recognize paralinguistic traits effectively. However, a data bottleneck still exists in the training of paralinguistic speech traits, and the lack of high-quality reference data for the training of artificial systems persists. Regarding this, we present an original empirical dataset collected using the BESST experimental protocol for capturing speech signals under induced stress. With this data, our aim is to promote the development of pre-emptive intervention systems based on stress estimation from speech.
Název v anglickém jazyce
Speech production under stress for machine learning: multimodal dataset of 79 cases and 8 signals
Popis výsledku anglicky
Early identification of cognitive or physical overload is critical in fields where human decision making matters when preventing threats to safety and property. Pilots, drivers, surgeons, and operators of nuclear plants are among those affected by this challenge, as acute stress can impair their cognition. In this context, the significance of paralinguistic automatic speech processing increases for early stress detection. The intensity, intonation, and cadence of an utterance are examples of paralinguistic traits that determine the meaning of a sentence and are often lost in the verbatim transcript. To address this issue, tools are being developed to recognize paralinguistic traits effectively. However, a data bottleneck still exists in the training of paralinguistic speech traits, and the lack of high-quality reference data for the training of artificial systems persists. Regarding this, we present an original empirical dataset collected using the BESST experimental protocol for capturing speech signals under induced stress. With this data, our aim is to promote the development of pre-emptive intervention systems based on stress estimation from speech.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/VJ01010108" target="_blank" >VJ01010108: Robustní zpracování nahrávek pro operativu a bezpečnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Scientific data
ISSN
2052-4463
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
1-9
Kód UT WoS článku
001353330000007
EID výsledku v databázi Scopus
2-s2.0-85209350842