Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multitask Speech Recognition and Speaker Change Detection for Unknown Number of Speakers

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F24%3APU155583" target="_blank" >RIV/00216305:26230/24:PU155583 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10446130" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10446130</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multitask Speech Recognition and Speaker Change Detection for Unknown Number of Speakers

  • Popis výsledku v původním jazyce

    Traditionally, automatic speech recognition (ASR) and speaker change detection (SCD) systems have been independently trained to generate comprehensive transcripts accompanied by speaker turns. Recently, joint training of ASR and SCD systems, by inserting speaker turn tokens in the ASR training text, has been shown to be successful. In this work, we present a multitask alternative to the joint training approach. Results obtained on the mix-headset audios of AMI corpus show that the proposed multitask training yields an absolute improvement of 1.8% in coverage and purity based F1 score on SCD task without ASR degradation. We also examine the trade-offs between the ASR and SCD performance when trained using multitask criteria. Additionally, we validate the speaker change information in the embedding spaces obtained after different transformer layers of a self-supervised pre-trained model, such as XLSR-53, by integrating an SCD classifier at the output of specific transformer layers. Results r

  • Název v anglickém jazyce

    Multitask Speech Recognition and Speaker Change Detection for Unknown Number of Speakers

  • Popis výsledku anglicky

    Traditionally, automatic speech recognition (ASR) and speaker change detection (SCD) systems have been independently trained to generate comprehensive transcripts accompanied by speaker turns. Recently, joint training of ASR and SCD systems, by inserting speaker turn tokens in the ASR training text, has been shown to be successful. In this work, we present a multitask alternative to the joint training approach. Results obtained on the mix-headset audios of AMI corpus show that the proposed multitask training yields an absolute improvement of 1.8% in coverage and purity based F1 score on SCD task without ASR degradation. We also examine the trade-offs between the ASR and SCD performance when trained using multitask criteria. Additionally, we validate the speaker change information in the embedding spaces obtained after different transformer layers of a self-supervised pre-trained model, such as XLSR-53, by integrating an SCD classifier at the output of specific transformer layers. Results r

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů