Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Policies Grow on Trees: Model Checking Families of MDPs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F25%3APU154852" target="_blank" >RIV/00216305:26230/25:PU154852 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Policies Grow on Trees: Model Checking Families of MDPs

  • Popis výsledku v původním jazyce

    Markov decision processes (MDPs) provide a fundamental model for sequential decision making under process uncertainty. A classical synthesis task is to compute for a given MDP a winning policy that achieves a desired specification. However, at design time, one typically needs to consider a family of MDPs modelling various system variations. For a given family, we study synthesising (1) the subset of MDPs where a winning policy exists and (2) a preferably small number of winning policies that together cover this subset. We introduce policy trees that concisely capture the synthesis result. The key ingredient for synthesising policy trees is a recursive application of a game-based abstraction. We combine this abstraction with an efficient refinement procedure and a post-processing step. An extensive empirical evaluation demonstrates superior scalability of our approach compared to naive baselines. For one of the benchmarks, we find 246 winning policies covering 94 million MDPs. Our algorithm

  • Název v anglickém jazyce

    Policies Grow on Trees: Model Checking Families of MDPs

  • Popis výsledku anglicky

    Markov decision processes (MDPs) provide a fundamental model for sequential decision making under process uncertainty. A classical synthesis task is to compute for a given MDP a winning policy that achieves a desired specification. However, at design time, one typically needs to consider a family of MDPs modelling various system variations. For a given family, we study synthesising (1) the subset of MDPs where a winning policy exists and (2) a preferably small number of winning policies that together cover this subset. We introduce policy trees that concisely capture the synthesis result. The key ingredient for synthesising policy trees is a recursive application of a game-based abstraction. We combine this abstraction with an efficient refinement procedure and a post-processing step. An extensive empirical evaluation demonstrates superior scalability of our approach compared to naive baselines. For one of the benchmarks, we find 246 winning policies covering 94 million MDPs. Our algorithm

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2025

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů