Predicting bankruptcy in Czech Republic: The role of data transformation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26510%2F12%3APU99858" target="_blank" >RIV/00216305:26510/12:PU99858 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predicting bankruptcy in Czech Republic: The role of data transformation
Popis výsledku v původním jazyce
The traditional bankruptcy models and their predictors cannot be used to predict bankruptcy in the Czech Republic as they have been intended for different business environments reflecting their specific features. Moreover, there are studies (Grice, Dugan, 2001; Wu, Gaunt, Gray, 2010; Niemann et al. 2008) showing that the precision of a bankruptcy model is significantly degraded if used in a field, period, and/or business environment different from that in which the learning data were observed. Buildinga new model is associated with pitfalls resulting from the character of bankruptcy data, e. g. the non-normality. In general, the fulfilment of method assumptions (e.g. normality) is one of the factors determining the quality of the rating model (Niemannet al, 2008). The discriminant analysis, as the most frequently used classification method used for bankruptcy prediction purposes, is based on the assumption of normality (Aziz, Dar, 2006). In praxis, financial data in the form of finan
Název v anglickém jazyce
Predicting bankruptcy in Czech Republic: The role of data transformation
Popis výsledku anglicky
The traditional bankruptcy models and their predictors cannot be used to predict bankruptcy in the Czech Republic as they have been intended for different business environments reflecting their specific features. Moreover, there are studies (Grice, Dugan, 2001; Wu, Gaunt, Gray, 2010; Niemann et al. 2008) showing that the precision of a bankruptcy model is significantly degraded if used in a field, period, and/or business environment different from that in which the learning data were observed. Buildinga new model is associated with pitfalls resulting from the character of bankruptcy data, e. g. the non-normality. In general, the fulfilment of method assumptions (e.g. normality) is one of the factors determining the quality of the rating model (Niemannet al, 2008). The discriminant analysis, as the most frequently used classification method used for bankruptcy prediction purposes, is based on the assumption of normality (Aziz, Dar, 2006). In praxis, financial data in the form of finan
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
AE - Řízení, správa a administrativa
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
International Conference "Trends in Economics and Management for the 21st Century"
ISBN
978-80-214-4581-9
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
1-9
Název nakladatele
Neuveden
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
20. 9. 2012
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—