Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Bankruptcy Prediction Models: Can the prediction power of the models be improved by using dynamic indicators?

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26510%2F14%3APU110422" target="_blank" >RIV/00216305:26510/14:PU110422 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2212567114003803" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2212567114003803</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/S2212-5671(14)00380-3" target="_blank" >10.1016/S2212-5671(14)00380-3</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Bankruptcy Prediction Models: Can the prediction power of the models be improved by using dynamic indicators?

  • Popis výsledku v původním jazyce

    The present approach to developing bankruptcy prediction models uses financial ratios related to the time of one year before bankruptcy. Some authors try to improve the prediction accuracy of the models by using averaged ratios involving several years before bankruptcy. This of course assumes that a bankruptcy can be predicted several years ahead. This idea led us to investigating the differences between the dynamics of the financial ratios developments. Here we assume that the dynamics of the values of some indicators in a group of prospering companies may be different from that of those facing bankruptcy threats. The indicators that showed a significant difference in the development dynamics were used to develop a bankruptcy prediction model. The research was carried out using data of the Czech manufacturing industries obtained from the AMADEUS database for years 2002 to 2012, with each company providing data for up to five years prior to the bankruptcy. Along with investigating the different approach to the selection of indicators for the development of a bankruptcy model, we were also concerned with the selection of a method to develop it. Researching the literature, we found that the most commonly used method is one of linear discrimination analysis, whose precision is improved if applied to normally distributed data without outliers. With financial data, however, these assumptions are difficult to meet. Therefore, a non-parametric Boosted-Trees method was used to select the predictors and develop the bankruptcy models.

  • Název v anglickém jazyce

    Bankruptcy Prediction Models: Can the prediction power of the models be improved by using dynamic indicators?

  • Popis výsledku anglicky

    The present approach to developing bankruptcy prediction models uses financial ratios related to the time of one year before bankruptcy. Some authors try to improve the prediction accuracy of the models by using averaged ratios involving several years before bankruptcy. This of course assumes that a bankruptcy can be predicted several years ahead. This idea led us to investigating the differences between the dynamics of the financial ratios developments. Here we assume that the dynamics of the values of some indicators in a group of prospering companies may be different from that of those facing bankruptcy threats. The indicators that showed a significant difference in the development dynamics were used to develop a bankruptcy prediction model. The research was carried out using data of the Czech manufacturing industries obtained from the AMADEUS database for years 2002 to 2012, with each company providing data for up to five years prior to the bankruptcy. Along with investigating the different approach to the selection of indicators for the development of a bankruptcy model, we were also concerned with the selection of a method to develop it. Researching the literature, we found that the most commonly used method is one of linear discrimination analysis, whose precision is improved if applied to normally distributed data without outliers. With financial data, however, these assumptions are difficult to meet. Therefore, a non-parametric Boosted-Trees method was used to select the predictors and develop the bankruptcy models.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    50602 - Public administration

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Procedia Economics and Finance

  • ISBN

  • ISSN

    2212-5671

  • e-ISSN

  • Počet stran výsledku

    9

  • Strana od-do

    565-574

  • Název nakladatele

    Elsevier

  • Místo vydání

    Neuveden

  • Místo konání akce

    Brno

  • Datum konání akce

    6. 3. 2014

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku

    000345439100067