Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Artificial intelligence in predicting the bankruptcy of non-financial corporations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28120%2F22%3A63551978" target="_blank" >RIV/70883521:28120/22:63551978 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://economic-research.pl/Journals/index.php/oc/article/view/2149" target="_blank" >http://economic-research.pl/Journals/index.php/oc/article/view/2149</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.24136/oc.2022.035" target="_blank" >10.24136/oc.2022.035</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Artificial intelligence in predicting the bankruptcy of non-financial corporations

  • Popis výsledku v původním jazyce

    Research background: In a modern economy, full of complexities, ensuring a business&apos; financial stability, and increasing its financial performance and competitiveness, has become especially difficult. Then, monitoring the company&apos;s financial situation and predicting its future development becomes important. Assessing the financial health of business entities using various models is an important area in not only scientific research, but also business practice.Purpose of the article: This study aims to predict the bankruptcy of companies in the engineering and automotive industries of the Slovak Republic using a multilayer neural network and logistic regression. Importantly, we develop a novel an early warning model for the Slovak engineering and automotive industries, which can be applied in countries with undeveloped capital markets.Methods: Data on the financial ratios of 2,384 companies were used. We used a logistic regression to analyse the data for the year 2019 and designed a logistic model. Meanwhile, the data for the years 2018 and 2019 were analysed using the neural network. In the prediction model, we analysed the predictive performance of several combinations of factors based on the industry sector, use of the scaling technique, activation function, and ratio of the sample distribution to the test and training parts.Findings &amp; value added: The financial indicators ROS, QR, NWC/A, and PC/S reduce the likelihood of bankruptcy. Regarding the value of this work, we constructed an optimal network for the automotive and engineering industries using nine financial indicators on the input layer in combination with one hidden layer. Moreover, we developed a novel prediction model for bankruptcy using six of these indicators. Almost all sampled industries are privatised, and most companies are foreign owned. Hence, international companies as well as researchers can apply our models to understand their financial health and sustainability. Moreover, they can conduct comparative analyses of their own model with ours to reveal areas of model improvements.

  • Název v anglickém jazyce

    Artificial intelligence in predicting the bankruptcy of non-financial corporations

  • Popis výsledku anglicky

    Research background: In a modern economy, full of complexities, ensuring a business&apos; financial stability, and increasing its financial performance and competitiveness, has become especially difficult. Then, monitoring the company&apos;s financial situation and predicting its future development becomes important. Assessing the financial health of business entities using various models is an important area in not only scientific research, but also business practice.Purpose of the article: This study aims to predict the bankruptcy of companies in the engineering and automotive industries of the Slovak Republic using a multilayer neural network and logistic regression. Importantly, we develop a novel an early warning model for the Slovak engineering and automotive industries, which can be applied in countries with undeveloped capital markets.Methods: Data on the financial ratios of 2,384 companies were used. We used a logistic regression to analyse the data for the year 2019 and designed a logistic model. Meanwhile, the data for the years 2018 and 2019 were analysed using the neural network. In the prediction model, we analysed the predictive performance of several combinations of factors based on the industry sector, use of the scaling technique, activation function, and ratio of the sample distribution to the test and training parts.Findings &amp; value added: The financial indicators ROS, QR, NWC/A, and PC/S reduce the likelihood of bankruptcy. Regarding the value of this work, we constructed an optimal network for the automotive and engineering industries using nine financial indicators on the input layer in combination with one hidden layer. Moreover, we developed a novel prediction model for bankruptcy using six of these indicators. Almost all sampled industries are privatised, and most companies are foreign owned. Hence, international companies as well as researchers can apply our models to understand their financial health and sustainability. Moreover, they can conduct comparative analyses of their own model with ours to reveal areas of model improvements.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50201 - Economic Theory

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Oeconomia Copernicana

  • ISSN

    2083-1277

  • e-ISSN

    2353-1827

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    PL - Polská republika

  • Počet stran výsledku

    37

  • Strana od-do

    "1215 "- 1251

  • Kód UT WoS článku

    000907675800008

  • EID výsledku v databázi Scopus

    2-s2.0-85147224931