Decision-making rules based on rough set theory: Decision-making rules based on rough set theory: Decision-making rules based on rough set theory: Creditworthiness case study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26510%2F14%3APU111531" target="_blank" >RIV/00216305:26510/14:PU111531 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Decision-making rules based on rough set theory: Decision-making rules based on rough set theory: Decision-making rules based on rough set theory: Creditworthiness case study
Popis výsledku v původním jazyce
Accurate client (company) information is important for assessing possibility creditworthiness of a client, e.g. in the insurance industry, thus accurate information are not known in real situations. There is always uncertainty in input data which may result in inaccurate decisions. To obtain accurate decision-making rules of client creditworthiness, rough set theory was introduced to obtain knowledge rules for client creditworthiness. Attributes such as type of company, length insurance, insurance penetration, damages (percent) and liquidity (2nd degree) were combined to build a decision table. After unification (discretization and categorization) input value attributes, decision-making rules were calculated through the decision-making rule generationalgorithm based on the rough set theory. A classification based on the generated rules classified the client (company) into creditworthy and uncreditworthy groups. The result of fuzzy logic was used to compare with the classification base
Název v anglickém jazyce
Decision-making rules based on rough set theory: Decision-making rules based on rough set theory: Decision-making rules based on rough set theory: Creditworthiness case study
Popis výsledku anglicky
Accurate client (company) information is important for assessing possibility creditworthiness of a client, e.g. in the insurance industry, thus accurate information are not known in real situations. There is always uncertainty in input data which may result in inaccurate decisions. To obtain accurate decision-making rules of client creditworthiness, rough set theory was introduced to obtain knowledge rules for client creditworthiness. Attributes such as type of company, length insurance, insurance penetration, damages (percent) and liquidity (2nd degree) were combined to build a decision table. After unification (discretization and categorization) input value attributes, decision-making rules were calculated through the decision-making rule generationalgorithm based on the rough set theory. A classification based on the generated rules classified the client (company) into creditworthy and uncreditworthy groups. The result of fuzzy logic was used to compare with the classification base
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
AE - Řízení, správa a administrativa
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Crafting Global Competitive Economies: 2020 Vision Strategic Planning & Smart Implementation
ISBN
978-0-9860419-3-8
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
321-327
Název nakladatele
International Business Information Management Association (IBIMA)
Místo vydání
Milan, Italy
Místo konání akce
Milan
Datum konání akce
6. 11. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—