Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Qualitative Upper and Lower Approximations of Complex Nonlinear Chaotic and Nonchaotic Models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26510%2F16%3APU117183" target="_blank" >RIV/00216305:26510/16:PU117183 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.worldscientific.com/doi/10.1142/S0218127415501734" target="_blank" >http://www.worldscientific.com/doi/10.1142/S0218127415501734</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/S0218127415501734" target="_blank" >10.1142/S0218127415501734</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Qualitative Upper and Lower Approximations of Complex Nonlinear Chaotic and Nonchaotic Models

  • Popis výsledku v původním jazyce

    Soft sciences, e.g. economics, ecology, sociology and their various integrations, are often used to develop e.g. forecasting models and optimization constraints. However, highly nonlinear, vague, partially inconsistent and multidimensional systems are prohibitively difficult to study at the quantitative level. Different types of quantitative simplifications are therefore used, e.g. linearization. The resulting models are oversimplified and therefore inapplicable results are often obtained. There are just three values used to quantify qualitative variables and their derivatives: plus/increasing; zero/constant; negative/decreasing. It means that a set of scenarios, i.e. the qualitative solution, is discrete. A qualitative model can be simplified by ignoring some of its equations. The simplified model is less restrictive and gives more scenarios. This set of scenarios is the model’s upper approximation. An additional equation makes the model more complex and the resulting set of fewer scenarios is the lower approximation. A qualitative model of dumped oscillations, upper and lower approximations of well-known Lorenz model and a vaguely known five-dimensional bankruptcy model are presented in detail. The upper approximation of the Lorenz set of differential equations has 213 and its lower approximation has 189 scenarios. No a prioriknowledge of qualitative models theory is required.

  • Název v anglickém jazyce

    Qualitative Upper and Lower Approximations of Complex Nonlinear Chaotic and Nonchaotic Models

  • Popis výsledku anglicky

    Soft sciences, e.g. economics, ecology, sociology and their various integrations, are often used to develop e.g. forecasting models and optimization constraints. However, highly nonlinear, vague, partially inconsistent and multidimensional systems are prohibitively difficult to study at the quantitative level. Different types of quantitative simplifications are therefore used, e.g. linearization. The resulting models are oversimplified and therefore inapplicable results are often obtained. There are just three values used to quantify qualitative variables and their derivatives: plus/increasing; zero/constant; negative/decreasing. It means that a set of scenarios, i.e. the qualitative solution, is discrete. A qualitative model can be simplified by ignoring some of its equations. The simplified model is less restrictive and gives more scenarios. This set of scenarios is the model’s upper approximation. An additional equation makes the model more complex and the resulting set of fewer scenarios is the lower approximation. A qualitative model of dumped oscillations, upper and lower approximations of well-known Lorenz model and a vaguely known five-dimensional bankruptcy model are presented in detail. The upper approximation of the Lorenz set of differential equations has 213 and its lower approximation has 189 scenarios. No a prioriknowledge of qualitative models theory is required.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Bifurcations & Chaos

  • ISSN

    0218-1274

  • e-ISSN

    1793-6551

  • Svazek periodika

    25

  • Číslo periodika v rámci svazku

    13

  • Stát vydavatele periodika

    SG - Singapurská republika

  • Počet stran výsledku

    12

  • Strana od-do

    1-12

  • Kód UT WoS článku

    000367751100005

  • EID výsledku v databázi Scopus

    2-s2.0-84954304491