Qualitative Upper and Lower Approximations of Complex Nonlinear Chaotic and Nonchaotic Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26510%2F16%3APU117183" target="_blank" >RIV/00216305:26510/16:PU117183 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.worldscientific.com/doi/10.1142/S0218127415501734" target="_blank" >http://www.worldscientific.com/doi/10.1142/S0218127415501734</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218127415501734" target="_blank" >10.1142/S0218127415501734</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Qualitative Upper and Lower Approximations of Complex Nonlinear Chaotic and Nonchaotic Models
Popis výsledku v původním jazyce
Soft sciences, e.g. economics, ecology, sociology and their various integrations, are often used to develop e.g. forecasting models and optimization constraints. However, highly nonlinear, vague, partially inconsistent and multidimensional systems are prohibitively difficult to study at the quantitative level. Different types of quantitative simplifications are therefore used, e.g. linearization. The resulting models are oversimplified and therefore inapplicable results are often obtained. There are just three values used to quantify qualitative variables and their derivatives: plus/increasing; zero/constant; negative/decreasing. It means that a set of scenarios, i.e. the qualitative solution, is discrete. A qualitative model can be simplified by ignoring some of its equations. The simplified model is less restrictive and gives more scenarios. This set of scenarios is the model’s upper approximation. An additional equation makes the model more complex and the resulting set of fewer scenarios is the lower approximation. A qualitative model of dumped oscillations, upper and lower approximations of well-known Lorenz model and a vaguely known five-dimensional bankruptcy model are presented in detail. The upper approximation of the Lorenz set of differential equations has 213 and its lower approximation has 189 scenarios. No a prioriknowledge of qualitative models theory is required.
Název v anglickém jazyce
Qualitative Upper and Lower Approximations of Complex Nonlinear Chaotic and Nonchaotic Models
Popis výsledku anglicky
Soft sciences, e.g. economics, ecology, sociology and their various integrations, are often used to develop e.g. forecasting models and optimization constraints. However, highly nonlinear, vague, partially inconsistent and multidimensional systems are prohibitively difficult to study at the quantitative level. Different types of quantitative simplifications are therefore used, e.g. linearization. The resulting models are oversimplified and therefore inapplicable results are often obtained. There are just three values used to quantify qualitative variables and their derivatives: plus/increasing; zero/constant; negative/decreasing. It means that a set of scenarios, i.e. the qualitative solution, is discrete. A qualitative model can be simplified by ignoring some of its equations. The simplified model is less restrictive and gives more scenarios. This set of scenarios is the model’s upper approximation. An additional equation makes the model more complex and the resulting set of fewer scenarios is the lower approximation. A qualitative model of dumped oscillations, upper and lower approximations of well-known Lorenz model and a vaguely known five-dimensional bankruptcy model are presented in detail. The upper approximation of the Lorenz set of differential equations has 213 and its lower approximation has 189 scenarios. No a prioriknowledge of qualitative models theory is required.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Bifurcations & Chaos
ISSN
0218-1274
e-ISSN
1793-6551
Svazek periodika
25
Číslo periodika v rámci svazku
13
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
12
Strana od-do
1-12
Kód UT WoS článku
000367751100005
EID výsledku v databázi Scopus
2-s2.0-84954304491