Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

5th International Multidisciplinary Scientific Conference on Social Sciences and Arts SGEM 2018

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26510%2F18%3APU134348" target="_blank" >RIV/00216305:26510/18:PU134348 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.5593/sgemsocial2018/1.50" target="_blank" >http://dx.doi.org/10.5593/sgemsocial2018/1.50</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5593/sgemsocial2018/1.50" target="_blank" >10.5593/sgemsocial2018/1.50</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    5th International Multidisciplinary Scientific Conference on Social Sciences and Arts SGEM 2018

  • Popis výsledku v původním jazyce

    This paper deals with the use of data-driven marketing as the important part of digital marketing. Data are valuable and necessary input for sellers as they are able to make decisions in many fields of digital marketing. This study is focused on the customer satisfaction modelling whereas the main aim is to find out models that optimally describe total customer satisfaction and to determine the importance of individual factors and discover their impact on the total satisfaction. The process of modelling is demonstrated in the field of free-time dance industry. The emphasis is placed on the course attendants rated their satisfaction in particular areas as well as their overall satisfaction with the dance courses. The authors employed regression analysis to measure the importance of individual factors on overall satisfaction to find out what factors should be focused on. To do that, two separate models were developed, both with a clustered and non-clustered version. The first model uses individual factors as inputs, the second works with semantically differentiated factor groups. Both models perform poorly in the non-clustered case. The first model significantly improves its explanatory power when we apply it to clustered data obtained by clustering process using Ward's criterion, for which the factors are ordered according to their significance. When customer clusters are compared to each other, the most important are course attendance, price and instructor expertise for each cluster respectively. These findings can be used as the input for customer relationship management module to design appropriate products for individual customer groups or to improve overall quality of product portfolio. Moreover the clustering method provides more precise data and should be an integral part of customer relationship management module so that marketers can take more efficient measures.

  • Název v anglickém jazyce

    5th International Multidisciplinary Scientific Conference on Social Sciences and Arts SGEM 2018

  • Popis výsledku anglicky

    This paper deals with the use of data-driven marketing as the important part of digital marketing. Data are valuable and necessary input for sellers as they are able to make decisions in many fields of digital marketing. This study is focused on the customer satisfaction modelling whereas the main aim is to find out models that optimally describe total customer satisfaction and to determine the importance of individual factors and discover their impact on the total satisfaction. The process of modelling is demonstrated in the field of free-time dance industry. The emphasis is placed on the course attendants rated their satisfaction in particular areas as well as their overall satisfaction with the dance courses. The authors employed regression analysis to measure the importance of individual factors on overall satisfaction to find out what factors should be focused on. To do that, two separate models were developed, both with a clustered and non-clustered version. The first model uses individual factors as inputs, the second works with semantically differentiated factor groups. Both models perform poorly in the non-clustered case. The first model significantly improves its explanatory power when we apply it to clustered data obtained by clustering process using Ward's criterion, for which the factors are ordered according to their significance. When customer clusters are compared to each other, the most important are course attendance, price and instructor expertise for each cluster respectively. These findings can be used as the input for customer relationship management module to design appropriate products for individual customer groups or to improve overall quality of product portfolio. Moreover the clustering method provides more precise data and should be an integral part of customer relationship management module so that marketers can take more efficient measures.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    50204 - Business and management

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    SGEM INTERNATIONAL MULTIDISCIPLINARY SCIENTIFIC CONFERENCE ON SOCIAL sCIENCES AND ARTS

  • ISBN

    978-619-7408-65-2

  • ISSN

    2367-5659

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    233-240

  • Název nakladatele

    STEF92 Ltd.

  • Místo vydání

    Albena Bulgaria

  • Místo konání akce

    Albena

  • Datum konání akce

    26. 8. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku