Customer Satisfaction Measurement – Clustering Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26510%2F18%3APU127810" target="_blank" >RIV/00216305:26510/18:PU127810 - isvavai.cz</a>
Výsledek na webu
<a href="https://acta.mendelu.cz/66/2/0561/" target="_blank" >https://acta.mendelu.cz/66/2/0561/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.11118/actaun201866020561" target="_blank" >10.11118/actaun201866020561</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Customer Satisfaction Measurement – Clustering Approach
Popis výsledku v původním jazyce
The paper deals with the issue of customer satisfaction measurement. The aim of this study is to determine the importance of the individual factors and their impact on total customer satisfaction for multiple segments by using linear regression and hierarchical clustering. This study is focused on the market of café establishment. We applied hierarchical clustering with Ward’s criterion to partition customers into segments and then we developed linear regression models for each segment. Linear models for partitioned data showed higher coefficient of determination than the model for the whole market. The results revealed that there are quite significant differences in rankings of customer satisfaction factors among the segments. This is caused by the different preferences of customers. The clustered data allows to achieve a higher homogeneity of data within the segment, which is crucial both for marketing theory and practice. The approach i.e. partitioning the market into smaller more specific segments could become perspective for marketing use in different economic sectors. This attitude can allow marketers to target better on customer segments according to the importance of individual factors.
Název v anglickém jazyce
Customer Satisfaction Measurement – Clustering Approach
Popis výsledku anglicky
The paper deals with the issue of customer satisfaction measurement. The aim of this study is to determine the importance of the individual factors and their impact on total customer satisfaction for multiple segments by using linear regression and hierarchical clustering. This study is focused on the market of café establishment. We applied hierarchical clustering with Ward’s criterion to partition customers into segments and then we developed linear regression models for each segment. Linear models for partitioned data showed higher coefficient of determination than the model for the whole market. The results revealed that there are quite significant differences in rankings of customer satisfaction factors among the segments. This is caused by the different preferences of customers. The clustered data allows to achieve a higher homogeneity of data within the segment, which is crucial both for marketing theory and practice. The approach i.e. partitioning the market into smaller more specific segments could become perspective for marketing use in different economic sectors. This attitude can allow marketers to target better on customer segments according to the importance of individual factors.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
50204 - Business and management
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis
ISSN
1211-8516
e-ISSN
2464-8310
Svazek periodika
66
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
9
Strana od-do
561-569
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85047602602