On the construction of solutions of general linear boundary value problems for systems of functional differential equations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26510%2F19%3APU128726" target="_blank" >RIV/00216305:26510/19:PU128726 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the construction of solutions of general linear boundary value problems for systems of functional differential equations
Popis výsledku v původním jazyce
For the linear boundary value problem x'(t)=p(x)(t)+q(t), l(x)=c_0 on the closed interval I in R, where p: C(I, R^n) to L(I, R^n) is a strongly bounded linear operator, l:C(I, R^n) to R^n is the bounded linear functional, q in L(I, R^n) and c_0 in R^n, we describe the method of construction of its solution by the successive approximations by the sequence of the solutions of simplest boundary value problems. We prove the conditions which guarantee convergence of the above mentioned sequences in general and special cases, we prove the stability of the convergence in some sense. Also, for illustration, we solve some typiecal problem in Maple.
Název v anglickém jazyce
On the construction of solutions of general linear boundary value problems for systems of functional differential equations
Popis výsledku anglicky
For the linear boundary value problem x'(t)=p(x)(t)+q(t), l(x)=c_0 on the closed interval I in R, where p: C(I, R^n) to L(I, R^n) is a strongly bounded linear operator, l:C(I, R^n) to R^n is the bounded linear functional, q in L(I, R^n) and c_0 in R^n, we describe the method of construction of its solution by the successive approximations by the sequence of the solutions of simplest boundary value problems. We prove the conditions which guarantee convergence of the above mentioned sequences in general and special cases, we prove the stability of the convergence in some sense. Also, for illustration, we solve some typiecal problem in Maple.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-03796S" target="_blank" >GA16-03796S: Vývoj nových metod řešení dynamických modelů řízení podniků.</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Miskolc Mathematical Notes
ISSN
1787-2405
e-ISSN
1787-2413
Svazek periodika
19
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
HU - Maďarsko
Počet stran výsledku
15
Strana od-do
1063-1078
Kód UT WoS článku
000458493700027
EID výsledku v databázi Scopus
—