Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Utilization of Artificial Intelligence for Sensitivity Analysis in the Stock Market

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26510%2F19%3APU133928" target="_blank" >RIV/00216305:26510/19:PU133928 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://acta.mendelu.cz/67/5/1269/" target="_blank" >https://acta.mendelu.cz/67/5/1269/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.11118/actaun201967051269" target="_blank" >10.11118/actaun201967051269</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Utilization of Artificial Intelligence for Sensitivity Analysis in the Stock Market

  • Popis výsledku v původním jazyce

    The main contribution of this paper is to perform sensitivity analysis using artificial intelligence methods on the US stock market using alternative psychological indicators. The Takagi-Sugeno fuzzy model applies investor sentiment represented by VIX index and monitors the impact of economic optimism, political stability and control of the corruption index on the S&P 500 stock index. Alternative psychological indicators have been chosen that have not been explored in the context of stock index performance sensitivity. Investors primarily use fundamental and technical analysis as a source to determine when and what to buy into an investment portfolio. However, psychological factors that may indicate the strength of reaction to the market are often neglected. Fuzzy rules are determined and tested using a neuro-fuzzy inference system and then the rules are reduced by fuzzy clustering to improve performance of ANFIS. The membership function is defined as a Gaussian function because it has the least RMSE value. The sensitivity analysis confirmed that there is a significant impact of the political stability index and the economic optimism index on the S&P 500 performance. Conversely, the sensitivity analysis, unlike the previous study, did not confirm the strong impact of VIX on equity index performance. Results indicate that incorporating psychological indicators in macroeconomic models leads to better supervision and control of the financial markets.

  • Název v anglickém jazyce

    Utilization of Artificial Intelligence for Sensitivity Analysis in the Stock Market

  • Popis výsledku anglicky

    The main contribution of this paper is to perform sensitivity analysis using artificial intelligence methods on the US stock market using alternative psychological indicators. The Takagi-Sugeno fuzzy model applies investor sentiment represented by VIX index and monitors the impact of economic optimism, political stability and control of the corruption index on the S&P 500 stock index. Alternative psychological indicators have been chosen that have not been explored in the context of stock index performance sensitivity. Investors primarily use fundamental and technical analysis as a source to determine when and what to buy into an investment portfolio. However, psychological factors that may indicate the strength of reaction to the market are often neglected. Fuzzy rules are determined and tested using a neuro-fuzzy inference system and then the rules are reduced by fuzzy clustering to improve performance of ANFIS. The membership function is defined as a Gaussian function because it has the least RMSE value. The sensitivity analysis confirmed that there is a significant impact of the political stability index and the economic optimism index on the S&P 500 performance. Conversely, the sensitivity analysis, unlike the previous study, did not confirm the strong impact of VIX on equity index performance. Results indicate that incorporating psychological indicators in macroeconomic models leads to better supervision and control of the financial markets.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    50206 - Finance

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis

  • ISSN

    1211-8516

  • e-ISSN

    2464-8310

  • Svazek periodika

    67

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    1392

  • Strana od-do

    1269-1283

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85074565886