Utilization of Artificial Intelligence for Sensitivity Analysis in the Stock Market
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26510%2F19%3APU133928" target="_blank" >RIV/00216305:26510/19:PU133928 - isvavai.cz</a>
Výsledek na webu
<a href="https://acta.mendelu.cz/67/5/1269/" target="_blank" >https://acta.mendelu.cz/67/5/1269/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.11118/actaun201967051269" target="_blank" >10.11118/actaun201967051269</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Utilization of Artificial Intelligence for Sensitivity Analysis in the Stock Market
Popis výsledku v původním jazyce
The main contribution of this paper is to perform sensitivity analysis using artificial intelligence methods on the US stock market using alternative psychological indicators. The Takagi-Sugeno fuzzy model applies investor sentiment represented by VIX index and monitors the impact of economic optimism, political stability and control of the corruption index on the S&P 500 stock index. Alternative psychological indicators have been chosen that have not been explored in the context of stock index performance sensitivity. Investors primarily use fundamental and technical analysis as a source to determine when and what to buy into an investment portfolio. However, psychological factors that may indicate the strength of reaction to the market are often neglected. Fuzzy rules are determined and tested using a neuro-fuzzy inference system and then the rules are reduced by fuzzy clustering to improve performance of ANFIS. The membership function is defined as a Gaussian function because it has the least RMSE value. The sensitivity analysis confirmed that there is a significant impact of the political stability index and the economic optimism index on the S&P 500 performance. Conversely, the sensitivity analysis, unlike the previous study, did not confirm the strong impact of VIX on equity index performance. Results indicate that incorporating psychological indicators in macroeconomic models leads to better supervision and control of the financial markets.
Název v anglickém jazyce
Utilization of Artificial Intelligence for Sensitivity Analysis in the Stock Market
Popis výsledku anglicky
The main contribution of this paper is to perform sensitivity analysis using artificial intelligence methods on the US stock market using alternative psychological indicators. The Takagi-Sugeno fuzzy model applies investor sentiment represented by VIX index and monitors the impact of economic optimism, political stability and control of the corruption index on the S&P 500 stock index. Alternative psychological indicators have been chosen that have not been explored in the context of stock index performance sensitivity. Investors primarily use fundamental and technical analysis as a source to determine when and what to buy into an investment portfolio. However, psychological factors that may indicate the strength of reaction to the market are often neglected. Fuzzy rules are determined and tested using a neuro-fuzzy inference system and then the rules are reduced by fuzzy clustering to improve performance of ANFIS. The membership function is defined as a Gaussian function because it has the least RMSE value. The sensitivity analysis confirmed that there is a significant impact of the political stability index and the economic optimism index on the S&P 500 performance. Conversely, the sensitivity analysis, unlike the previous study, did not confirm the strong impact of VIX on equity index performance. Results indicate that incorporating psychological indicators in macroeconomic models leads to better supervision and control of the financial markets.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
50206 - Finance
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis
ISSN
1211-8516
e-ISSN
2464-8310
Svazek periodika
67
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
1392
Strana od-do
1269-1283
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85074565886