MOMENT EQUATIONS FOR STOCHASTIC SYSTEM SPECIAL KIND AS INSTRUMENT IN APPLY PROBLEM
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26510%2F22%3APU151003" target="_blank" >RIV/00216305:26510/22:PU151003 - isvavai.cz</a>
Výsledek na webu
<a href="https://journal.access-bg.org/journalfiles/journal/issue-3-3-2022/02-moment_equations_for_stochastic_system_special_kind_as_instrument_in_apply_problem.pdf" target="_blank" >https://journal.access-bg.org/journalfiles/journal/issue-3-3-2022/02-moment_equations_for_stochastic_system_special_kind_as_instrument_in_apply_problem.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.46656/access.2022.3.3(2)" target="_blank" >10.46656/access.2022.3.3(2)</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
MOMENT EQUATIONS FOR STOCHASTIC SYSTEM SPECIAL KIND AS INSTRUMENT IN APPLY PROBLEM
Popis výsledku v původním jazyce
In paper considered the method of constructing moment equations for random solution of systems of nonlinear differential and difference equations, the right part of which depends on the stochastic process. Torque equations are constructed in the presence of jumps in solutions. For a system of differential equations with random coefficients, the case when the heterogeneous part of the system contains random processes such as white noise is considered. The ideas of A.M Kolmogorov and V.I. Zubov on the analytical definition of random processes have been developed. In particular, non-Markov processes are investigated, which are determined by systems of linear differential equations with a delay in the argument. With the help of stochastic operators, fundamentally new results were obtained for non-Afarkov random processes, from which the main known results for Markov processes emerge. Methods and algorithms of analytical determination of finite-valued and infinite-digit random processes are proposed. The methods of studying the behaviours of the matrix of the second moments of some important classes of stochastic systems of equations are given because many optimization problems are reduced to the minimization of such a matrix. The substantiation of difference approximation for solving some types of differential equations used for the numerical solution of problems is carried out.
Název v anglickém jazyce
MOMENT EQUATIONS FOR STOCHASTIC SYSTEM SPECIAL KIND AS INSTRUMENT IN APPLY PROBLEM
Popis výsledku anglicky
In paper considered the method of constructing moment equations for random solution of systems of nonlinear differential and difference equations, the right part of which depends on the stochastic process. Torque equations are constructed in the presence of jumps in solutions. For a system of differential equations with random coefficients, the case when the heterogeneous part of the system contains random processes such as white noise is considered. The ideas of A.M Kolmogorov and V.I. Zubov on the analytical definition of random processes have been developed. In particular, non-Markov processes are investigated, which are determined by systems of linear differential equations with a delay in the argument. With the help of stochastic operators, fundamentally new results were obtained for non-Afarkov random processes, from which the main known results for Markov processes emerge. Methods and algorithms of analytical determination of finite-valued and infinite-digit random processes are proposed. The methods of studying the behaviours of the matrix of the second moments of some important classes of stochastic systems of equations are given because many optimization problems are reduced to the minimization of such a matrix. The substantiation of difference approximation for solving some types of differential equations used for the numerical solution of problems is carried out.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACCESS-ACCESS TO SCIENCE BUSINESS INNOVATION IN THE DIGITAL ECONOMY
ISSN
2683-1007
e-ISSN
—
Svazek periodika
3
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
BG - Bulharská republika
Počet stran výsledku
11
Strana od-do
221-231
Kód UT WoS článku
000894274600002
EID výsledku v databázi Scopus
—