Critical review of text mining and sentiment analysis for stock market prediction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26510%2F23%3APU147968" target="_blank" >RIV/00216305:26510/23:PU147968 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.vilniustech.lt/index.php/JBEM/article/view/18805" target="_blank" >https://journals.vilniustech.lt/index.php/JBEM/article/view/18805</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3846/jbem.2023.18805" target="_blank" >10.3846/jbem.2023.18805</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Critical review of text mining and sentiment analysis for stock market prediction
Popis výsledku v původním jazyce
The paper is aimed at a critical review of the literature dealing with text mining and sentiment analysis for stock market prediction. The aim of this work is to create a critical review of the literature, especially with regard to the latest findings of research articles in the selected topic strictly focused on stock markets represented by stock indices or stock titles. This requires examining and critically analyzing the methods used in the analysis of sentiment from textual data, with special regard to the possibility of generalization and transferability of research results. For this reason, an analytical approach is also used in working with the literature and a critical approach in its organization, especially for completeness, coherence, and consistency. Based on the selected criteria, 260 articles corresponding to the subject area are selected from the world databases of Web of Science and Scopus. These studies are graphically captured through bibliometric analysis. Subsequently, the selection of articles was narrowed to 49. The outputs are synthesized and the main findings and limits of the current state of research are highlighted with possible future directions of subsequent research.
Název v anglickém jazyce
Critical review of text mining and sentiment analysis for stock market prediction
Popis výsledku anglicky
The paper is aimed at a critical review of the literature dealing with text mining and sentiment analysis for stock market prediction. The aim of this work is to create a critical review of the literature, especially with regard to the latest findings of research articles in the selected topic strictly focused on stock markets represented by stock indices or stock titles. This requires examining and critically analyzing the methods used in the analysis of sentiment from textual data, with special regard to the possibility of generalization and transferability of research results. For this reason, an analytical approach is also used in working with the literature and a critical approach in its organization, especially for completeness, coherence, and consistency. Based on the selected criteria, 260 articles corresponding to the subject area are selected from the world databases of Web of Science and Scopus. These studies are graphically captured through bibliometric analysis. Subsequently, the selection of articles was narrowed to 49. The outputs are synthesized and the main findings and limits of the current state of research are highlighted with possible future directions of subsequent research.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50206 - Finance
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Business Economics and Management
ISSN
1611-1699
e-ISSN
2029-4433
Svazek periodika
24
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
LT - Litevská republika
Počet stran výsledku
22
Strana od-do
1-22
Kód UT WoS článku
000964458700001
EID výsledku v databázi Scopus
2-s2.0-85153866565