Beyond Sentiment in Stock Price Prediction: Integrating News Sentiment and Investor Attention with Temporal Fusion Transformer
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F24%3A39922253" target="_blank" >RIV/00216275:25410/24:39922253 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-63219-8_3" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-63219-8_3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-63219-8_3" target="_blank" >10.1007/978-3-031-63219-8_3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Beyond Sentiment in Stock Price Prediction: Integrating News Sentiment and Investor Attention with Temporal Fusion Transformer
Popis výsledku v původním jazyce
News sentiment is attracting considerable interest in stock market prediction, given its crucial role in shaping stock prices. Previous research has mainly focused on improving prediction accuracy by exploiting news sentiment, without adequately considering the different levels of attention that individual news articles receive. Furthermore, despite the advanced predictive capabilities of deep learning models, there has been a lack of focus on the interpretability of these models, leading to predictions that are not transparent. This study presents an innovative prediction model that integrates a FinBERT-based analysis of news sentiment and investor attention metrics with an attention-based Temporal Fusion Transformer framework. This approach not only enables highly effective forecasting, but also provides insights into the temporal dynamics that influence the stockmarket. The effectiveness of the model is demonstrated by analyzing stock price data for 41 of the largest market capitalization companies over the period 2010 to 2021. The results confirm the superiority of the proposed model over existing deep learning approaches, and the attention analysis underscores the critical role of synthesizing news sentiment and attention metrics in predicting stock prices.
Název v anglickém jazyce
Beyond Sentiment in Stock Price Prediction: Integrating News Sentiment and Investor Attention with Temporal Fusion Transformer
Popis výsledku anglicky
News sentiment is attracting considerable interest in stock market prediction, given its crucial role in shaping stock prices. Previous research has mainly focused on improving prediction accuracy by exploiting news sentiment, without adequately considering the different levels of attention that individual news articles receive. Furthermore, despite the advanced predictive capabilities of deep learning models, there has been a lack of focus on the interpretability of these models, leading to predictions that are not transparent. This study presents an innovative prediction model that integrates a FinBERT-based analysis of news sentiment and investor attention metrics with an attention-based Temporal Fusion Transformer framework. This approach not only enables highly effective forecasting, but also provides insights into the temporal dynamics that influence the stockmarket. The effectiveness of the model is demonstrated by analyzing stock price data for 41 of the largest market capitalization companies over the period 2010 to 2021. The results confirm the superiority of the proposed model over existing deep learning approaches, and the attention analysis underscores the critical role of synthesizing news sentiment and attention metrics in predicting stock prices.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-22586S" target="_blank" >GA22-22586S: Aspektově orientovaná analýza sentimentu finančních textů pro predikci finanční výkonnosti podniku</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, PT III, AIAI 2024
ISBN
978-3-031-63218-1
ISSN
1868-4238
e-ISSN
1868-422X
Počet stran výsledku
14
Strana od-do
30-43
Název nakladatele
SPRINGER INTERNATIONAL PUBLISHING AG
Místo vydání
CHAM
Místo konání akce
Corfu
Datum konání akce
27. 6. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001283392400003