Predicting stock return volatility using sentiment analysis of corporate annual reports
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F21%3A39917733" target="_blank" >RIV/00216275:25410/21:39917733 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.taylorfrancis.com/chapters/edit/10.4324/9781003037903-5/predicting-stock-return-volatility-using-sentiment-analysis-corporate-annual-reports-petr-hajek-renata-myskova-vladimir-olej" target="_blank" >https://www.taylorfrancis.com/chapters/edit/10.4324/9781003037903-5/predicting-stock-return-volatility-using-sentiment-analysis-corporate-annual-reports-petr-hajek-renata-myskova-vladimir-olej</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predicting stock return volatility using sentiment analysis of corporate annual reports
Popis výsledku v původním jazyce
This chapter focuses on the short-term volatility of corporate stocks and the causes that triggered it, and derives implied volatility based on historical volatility. Chin et al. examined the links among stock market volatility, market sentiment, macroeconomic indicators, and spread volatility over the persisting long-term component and the temporary short-term component. They found no empirical evidence of the link between the volatile component and macroeconomic indicators but found that the intermediate component was linked to variations in market sentiment. The chapter aims to propose a machine learning-based model for predicting short-term stock return volatility and study the effect of annual report filing on abnormal changes in firms’ stock returns using the proposed model. It demonstrates that mining corporate annual reports can be effective in predicting short-term stock return volatility using a three-day event window.
Název v anglickém jazyce
Predicting stock return volatility using sentiment analysis of corporate annual reports
Popis výsledku anglicky
This chapter focuses on the short-term volatility of corporate stocks and the causes that triggered it, and derives implied volatility based on historical volatility. Chin et al. examined the links among stock market volatility, market sentiment, macroeconomic indicators, and spread volatility over the persisting long-term component and the temporary short-term component. They found no empirical evidence of the link between the volatile component and macroeconomic indicators but found that the intermediate component was linked to variations in market sentiment. The chapter aims to propose a machine learning-based model for predicting short-term stock return volatility and study the effect of annual report filing on abnormal changes in firms’ stock returns using the proposed model. It demonstrates that mining corporate annual reports can be effective in predicting short-term stock return volatility using a three-day event window.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
50206 - Finance
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-15498S" target="_blank" >GA19-15498S: Modelování emocí ve verbální a neverbální manažerské komunikaci pro predikci podnikových finančních rizik</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Essentials of Machine Learning in Finance and Accounting
ISBN
978-0-367-48083-7
Počet stran výsledku
21
Strana od-do
75-95
Počet stran knihy
258
Název nakladatele
Taylor & Francis Ltd.
Místo vydání
Abingdon
Kód UT WoS kapitoly
—