The Role of Coherence in Image Formation in Holographic Microscopy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F14%3APU109109" target="_blank" >RIV/00216305:26620/14:PU109109 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/B978-0-444-63379-8.00005-2" target="_blank" >http://dx.doi.org/10.1016/B978-0-444-63379-8.00005-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/B978-0-444-63379-8.00005-2" target="_blank" >10.1016/B978-0-444-63379-8.00005-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Role of Coherence in Image Formation in Holographic Microscopy
Popis výsledku v původním jazyce
Off-axis digital holographic microscopes (DHM) working with incoherent light have been designed and constructed. Their imaging properties can be changed by variation of the coherence of light. This spans from emulation of classic coherent-light DHM allowing for numerical focusing to incoherent-light DHM characterized by high-quality imaging, no coherence noise, halved limit of lateral resolution, and by coherence-gating effect making imaging in turbid media and optical sectioning possible. We describe theoretically the imaging process of a holographic microscope (HM) and how it is influenced by the coherence of illumination. The 3D coherent transfer function (CTF) reveals the dependence of a spatial frequency passband on the coherence properties of a source. Reduction of coherence leads to the passband broadening i.e. to the resolution enhancement. This effect is obvious also from the form of 3D point spread functions, which allows us to characterize imaging by 3D convolution. Imaging and numerical focusing of planar objects are described by 2D CTF derived from 3D CTF for various defocusing. Results for 2D objects are presented also in a simplified approximate form, which gives deeper insight into the fundaments of imaging. In this approximation, the image formation in a turbid medium by coherence gating is elucidated. In addition, it is shown that the mutual lateral shift of the object and reference beams amplifies higher spatial frequencies of a defocused object and allows an object in a turbid medium to be imaged by diffuse (non-ballistic) light. Important theoretical results are verified experimentally.
Název v anglickém jazyce
The Role of Coherence in Image Formation in Holographic Microscopy
Popis výsledku anglicky
Off-axis digital holographic microscopes (DHM) working with incoherent light have been designed and constructed. Their imaging properties can be changed by variation of the coherence of light. This spans from emulation of classic coherent-light DHM allowing for numerical focusing to incoherent-light DHM characterized by high-quality imaging, no coherence noise, halved limit of lateral resolution, and by coherence-gating effect making imaging in turbid media and optical sectioning possible. We describe theoretically the imaging process of a holographic microscope (HM) and how it is influenced by the coherence of illumination. The 3D coherent transfer function (CTF) reveals the dependence of a spatial frequency passband on the coherence properties of a source. Reduction of coherence leads to the passband broadening i.e. to the resolution enhancement. This effect is obvious also from the form of 3D point spread functions, which allows us to characterize imaging by 3D convolution. Imaging and numerical focusing of planar objects are described by 2D CTF derived from 3D CTF for various defocusing. Results for 2D objects are presented also in a simplified approximate form, which gives deeper insight into the fundaments of imaging. In this approximation, the image formation in a turbid medium by coherence gating is elucidated. In addition, it is shown that the mutual lateral shift of the object and reference beams amplifies higher spatial frequencies of a defocused object and allows an object in a turbid medium to be imaged by diffuse (non-ballistic) light. Important theoretical results are verified experimentally.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PROGRESS IN OPTICS
ISSN
0079-6638
e-ISSN
—
Svazek periodika
59
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
70
Strana od-do
267-336
Kód UT WoS článku
000348705400006
EID výsledku v databázi Scopus
2-s2.0-84899996688