Holographic microscopy in low coherence
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F16%3APU125844" target="_blank" >RIV/00216305:26620/16:PU125844 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9718/1/Holographic-microscopy-in-low-coherence/10.1117/12.2209465.pdf?SSO=1" target="_blank" >https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9718/1/Holographic-microscopy-in-low-coherence/10.1117/12.2209465.pdf?SSO=1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1117/12.2209465" target="_blank" >10.1117/12.2209465</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Holographic microscopy in low coherence
Popis výsledku v původním jazyce
Low coherence of the illumination substantially improves the quality of holographic and quantitative phase imaging (QPI) by elimination of the coherence noise and various artefacts and by improving the lateral resolution compared to the coherent holographic microscopy. Attributes of coherence-controlled holographic microscope (CCHM) designed and built as an off-axis holographic system allowing QPI within the range from complete coherent to incoherent illumination confirmed these expected advantages. Low coherence illumination also furnishes the coherence gating which constraints imaging of some spatial frequencies of an object axially thus forming an optical section in the wide sense. In this way the depth discrimination capability of the microscope is introduced at the price of restricting the axial interval of possible numerical refocusing. We describe theoretically these effects for the whole range of illumination coherence. We also show that the axial refocusing constraints can be overcome using advanced mode of imaging based on mutual lateral shift of reference and object image fields in CCHM. Lowering the spatial coherence of illumination means increasing its numerical aperture. We study how this change of the illumination geometry influences 3D objects QPI and especially the interpretation of live cells QPI in terms of the dry mass density measurement. In this way a strong dependence of the imaging process on the light coherence is demonstrated. The theoretical calculations and numerical simulations are supported by experimental data including a chance of time-lapse watching of live cells even in optically turbid milieu.
Název v anglickém jazyce
Holographic microscopy in low coherence
Popis výsledku anglicky
Low coherence of the illumination substantially improves the quality of holographic and quantitative phase imaging (QPI) by elimination of the coherence noise and various artefacts and by improving the lateral resolution compared to the coherent holographic microscopy. Attributes of coherence-controlled holographic microscope (CCHM) designed and built as an off-axis holographic system allowing QPI within the range from complete coherent to incoherent illumination confirmed these expected advantages. Low coherence illumination also furnishes the coherence gating which constraints imaging of some spatial frequencies of an object axially thus forming an optical section in the wide sense. In this way the depth discrimination capability of the microscope is introduced at the price of restricting the axial interval of possible numerical refocusing. We describe theoretically these effects for the whole range of illumination coherence. We also show that the axial refocusing constraints can be overcome using advanced mode of imaging based on mutual lateral shift of reference and object image fields in CCHM. Lowering the spatial coherence of illumination means increasing its numerical aperture. We study how this change of the illumination geometry influences 3D objects QPI and especially the interpretation of live cells QPI in terms of the dry mass density measurement. In this way a strong dependence of the imaging process on the light coherence is demonstrated. The theoretical calculations and numerical simulations are supported by experimental data including a chance of time-lapse watching of live cells even in optically turbid milieu.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-14612S" target="_blank" >GA15-14612S: Pokroky nekoherentní holografické mikroskopie při použití fotonických simulací a principů singulární optiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
QUANTITATIVE PHASE IMAGING II
ISBN
978-1-62841-952-8
ISSN
0277-786X
e-ISSN
—
Počet stran výsledku
7
Strana od-do
„971806-1“-„971806-7“
Název nakladatele
Neuveden
Místo vydání
Neuveden
Místo konání akce
San Francisco
Datum konání akce
13. 2. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000380605300006