Electric Field Effect on Phospholipid Monolayers at an Aqueous-Organic Liquid-Liquid Interface
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F14%3APU112375" target="_blank" >RIV/00216305:26620/14:PU112375 - isvavai.cz</a>
Výsledek na webu
<a href="http://pubs.acs.org/doi/abs/10.1021/jp5098525" target="_blank" >http://pubs.acs.org/doi/abs/10.1021/jp5098525</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/jp5098525" target="_blank" >10.1021/jp5098525</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Electric Field Effect on Phospholipid Monolayers at an Aqueous-Organic Liquid-Liquid Interface
Popis výsledku v původním jazyce
The electric potential difference across cell membranes, known as the membrane potential, plays an important role in the activation of many biological processes. To investigate the effect of the membrane potential on the molecular ordering of lipids within a biomimetic membrane, a self-assembled monolayer of 1-stearoyl-2-oleoyl-snglycero- 3-phosphocholine (SOPC) lipids at an electrified 1,2-dichloroethane/water interface is studied with X-ray reflectivity and interfacial tension. Measurements over a range of electric potential differences, -150 to +130 mV, that encompass the range of typical biomembrane potentials demonstrate a nearly constant and stable structure whose lipid interfacial density is comparable to that found in other biomimetic membrane systems. Measurements at higher positive potentials, up to 330 mV, illustrate a monotonic decrease in the lipid interfacial density and accompanying variations in the interfacial configuration of the lipid. Molecular dynamics simulations, designed to mimic the experimental conditions, show that the measured changes in lipid configuration are due primarily to the variation in area per lipid with increasing applied electric field. Rotation of the SOPC dipole moment by the torque from the applied electric field appears to be negligible, except at the highest measured potentials. The simulations confirm in atomistic detail the measured potentialdependent characteristics of SOPC monolayers. Our hybrid study sheds light on phospholipid monolayer stability under different membrane potentials, which is important for understanding membrane processes. This study also illustrates the use of X-ray surface scattering to probe the ordering of surfactant monolayers at an electrified aqueous-organic liquid-liquid interface.
Název v anglickém jazyce
Electric Field Effect on Phospholipid Monolayers at an Aqueous-Organic Liquid-Liquid Interface
Popis výsledku anglicky
The electric potential difference across cell membranes, known as the membrane potential, plays an important role in the activation of many biological processes. To investigate the effect of the membrane potential on the molecular ordering of lipids within a biomimetic membrane, a self-assembled monolayer of 1-stearoyl-2-oleoyl-snglycero- 3-phosphocholine (SOPC) lipids at an electrified 1,2-dichloroethane/water interface is studied with X-ray reflectivity and interfacial tension. Measurements over a range of electric potential differences, -150 to +130 mV, that encompass the range of typical biomembrane potentials demonstrate a nearly constant and stable structure whose lipid interfacial density is comparable to that found in other biomimetic membrane systems. Measurements at higher positive potentials, up to 330 mV, illustrate a monotonic decrease in the lipid interfacial density and accompanying variations in the interfacial configuration of the lipid. Molecular dynamics simulations, designed to mimic the experimental conditions, show that the measured changes in lipid configuration are due primarily to the variation in area per lipid with increasing applied electric field. Rotation of the SOPC dipole moment by the torque from the applied electric field appears to be negligible, except at the highest measured potentials. The simulations confirm in atomistic detail the measured potentialdependent characteristics of SOPC monolayers. Our hybrid study sheds light on phospholipid monolayer stability under different membrane potentials, which is important for understanding membrane processes. This study also illustrates the use of X-ray surface scattering to probe the ordering of surfactant monolayers at an electrified aqueous-organic liquid-liquid interface.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0068" target="_blank" >ED1.1.00/02.0068: CEITEC - central european institute of technology</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF PHYSICAL CHEMISTRY B
ISSN
1089-5647
e-ISSN
—
Svazek periodika
119
Číslo periodika v rámci svazku
29
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
9319-9334
Kód UT WoS článku
000358623900055
EID výsledku v databázi Scopus
2-s2.0-84937893765