Experimental optimization of power-function-shaped drive pulse for stick-slip piezo actuators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F15%3APU114040" target="_blank" >RIV/00216305:26620/15:PU114040 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.precisioneng.2015.04.016" target="_blank" >http://dx.doi.org/10.1016/j.precisioneng.2015.04.016</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.precisioneng.2015.04.016" target="_blank" >10.1016/j.precisioneng.2015.04.016</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Experimental optimization of power-function-shaped drive pulse for stick-slip piezo actuators
Popis výsledku v původním jazyce
Motion of a stick-slip piezo actuator is generally controlled by the parameters related to its mechanical design and characteristics of the driving pulses applied to piezoceramic shear plates. The goal of the proposed optimization method is to find the driving pulse parameters leading to the fastest and the most reliable actuator operation. In the paper the method is tested on a rotary stick-slip piezo actuating system utilized in an atomic force microscope. The optimization is based on the measurement of the actuator response to driving pulses of different shapes and repetition frequencies at various load forces. To provide it, a computer controlled testing system generating the driving pulses, and detecting and recording the corresponding angular motion response of the actuator by a position sensitive photo detector (PSPD) in real time has been developed. To better understand and interpret the experimental results, supportive methods based on a simple analytical model and numerical simulations were used as well. In this way the shapes of the single driving pulses and values of the load force providing the biggest actuator steps were determined. Generally, the maximal steps were achieved for such a combination of the pulse shapes and load forces providing high velocities at the end of the sticking mode of the actuator motion and, at the same time, lower decelerations during the slipping mode. As for the multiple driving pulses, the pulse shapes and values of repetition frequency ensuring the sticking mode of the actuator motion during the pulse rise time together with the maximum average angular rotor velocity were specified. In this way the effective and stable operation conditions of the actuator were provided. In principle, the presented method can be applied for the testing and optimization of any linear or angular stick-slip actuator.
Název v anglickém jazyce
Experimental optimization of power-function-shaped drive pulse for stick-slip piezo actuators
Popis výsledku anglicky
Motion of a stick-slip piezo actuator is generally controlled by the parameters related to its mechanical design and characteristics of the driving pulses applied to piezoceramic shear plates. The goal of the proposed optimization method is to find the driving pulse parameters leading to the fastest and the most reliable actuator operation. In the paper the method is tested on a rotary stick-slip piezo actuating system utilized in an atomic force microscope. The optimization is based on the measurement of the actuator response to driving pulses of different shapes and repetition frequencies at various load forces. To provide it, a computer controlled testing system generating the driving pulses, and detecting and recording the corresponding angular motion response of the actuator by a position sensitive photo detector (PSPD) in real time has been developed. To better understand and interpret the experimental results, supportive methods based on a simple analytical model and numerical simulations were used as well. In this way the shapes of the single driving pulses and values of the load force providing the biggest actuator steps were determined. Generally, the maximal steps were achieved for such a combination of the pulse shapes and load forces providing high velocities at the end of the sticking mode of the actuator motion and, at the same time, lower decelerations during the slipping mode. As for the multiple driving pulses, the pulse shapes and values of repetition frequency ensuring the sticking mode of the actuator motion during the pulse rise time together with the maximum average angular rotor velocity were specified. In this way the effective and stable operation conditions of the actuator were provided. In principle, the presented method can be applied for the testing and optimization of any linear or angular stick-slip actuator.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY
ISSN
0141-6359
e-ISSN
1873-2372
Svazek periodika
42
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
187-194
Kód UT WoS článku
000359173400019
EID výsledku v databázi Scopus
—