The Synergic Effect of Atomic Hydrogen Adsorption and Catalyst Spreading on Ge Nanowire Growth Orientation and Kinking
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F16%3APU120103" target="_blank" >RIV/00216305:26620/16:PU120103 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1021/acs.nanolett.6b01352" target="_blank" >http://dx.doi.org/10.1021/acs.nanolett.6b01352</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.nanolett.6b01352" target="_blank" >10.1021/acs.nanolett.6b01352</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Synergic Effect of Atomic Hydrogen Adsorption and Catalyst Spreading on Ge Nanowire Growth Orientation and Kinking
Popis výsledku v původním jazyce
Hydride precursors are commonly used for semiconductor nanowire growth from the vapor phase and hydrogen is quite often used as a carrier gas. Here, we used in situ scanning electron microscopy and spatially resolved Auger spectroscopy to reveal the essential role of atomic hydrogen in determining the growth direction of Ge nanowires with an Au catalyst. With hydrogen passivating nanowire sidewalls the formation of inclined facets is suppressed, which stabilizes the growth in the ⟨111⟩ direction. By contrast, without hydrogen gold diffuses out of the catalyst and decorates the nanowire sidewalls, which strongly affects the surface free energy of the system and results in the ⟨110⟩ oriented growth. The experiments with intentional nanowire kinking reveal the existence of an energetic barrier, which originates from the kinetic force needed to drive the droplet out of its optimum configuration on top of a nanowire. Our results stress the role of the catalyst material and surface chemistry in determining the nanowire growth direction and provide additional insights into a kinking mechanism, thus allowing to inhibit or to intentionally initiate spontaneous kinking.
Název v anglickém jazyce
The Synergic Effect of Atomic Hydrogen Adsorption and Catalyst Spreading on Ge Nanowire Growth Orientation and Kinking
Popis výsledku anglicky
Hydride precursors are commonly used for semiconductor nanowire growth from the vapor phase and hydrogen is quite often used as a carrier gas. Here, we used in situ scanning electron microscopy and spatially resolved Auger spectroscopy to reveal the essential role of atomic hydrogen in determining the growth direction of Ge nanowires with an Au catalyst. With hydrogen passivating nanowire sidewalls the formation of inclined facets is suppressed, which stabilizes the growth in the ⟨111⟩ direction. By contrast, without hydrogen gold diffuses out of the catalyst and decorates the nanowire sidewalls, which strongly affects the surface free energy of the system and results in the ⟨110⟩ oriented growth. The experiments with intentional nanowire kinking reveal the existence of an energetic barrier, which originates from the kinetic force needed to drive the droplet out of its optimum configuration on top of a nanowire. Our results stress the role of the catalyst material and surface chemistry in determining the nanowire growth direction and provide additional insights into a kinking mechanism, thus allowing to inhibit or to intentionally initiate spontaneous kinking.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
NANO LETTERS
ISSN
1530-6984
e-ISSN
1530-6992
Svazek periodika
16
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
4880-4886
Kód UT WoS článku
000381331900021
EID výsledku v databázi Scopus
2-s2.0-84981341794