Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Solar water splitting on porous-alumina-assisted TiO2-doped WOx nanorod photoanodes: Paradoxes and challenges

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F17%3APU122172" target="_blank" >RIV/00216305:26620/17:PU122172 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.nanoen.2017.01.029" target="_blank" >http://dx.doi.org/10.1016/j.nanoen.2017.01.029</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.nanoen.2017.01.029" target="_blank" >10.1016/j.nanoen.2017.01.029</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Solar water splitting on porous-alumina-assisted TiO2-doped WOx nanorod photoanodes: Paradoxes and challenges

  • Popis výsledku v původním jazyce

    Arrays of self-organized WO3-based semiconductor nanorods are prepared from a thin W layer, W/Ti bilayer (tungsten-on-titanium), and W-10at.%Ti alloy layer via the porous-anodic-alumina (PAA)-assisted anodization at various conditions to address the radius/length ratio of~13/130 and ~70/700 nm (respectively small’ and big’ nanorods). Doping the WO3 nanorods with TiO2 was achieved, for the first time, simply by anodizing the W/Ti and W-10at.%Ti layers through the alumina nanopores. The post-anodizing treatments combined PAA dissolution with annealing in air and vacuum at 500–550 °C to alter the film composition, crystal structure, and electrical properties. The air-annealed big nanorods comprising monoclinic and triclinic WO3 crystal phases reveal their superior performance in photoelectrochemical (PEC) water splitting, showing a low onset potential (0.5 VRHE) and a competitive value of photocurrent (15.5 mA cm-2) in 0.1 mol dm-3 Na2SO4 solution (pH 5.0) under chopped illumination at a single wavelength of 405 nm, 1 W cm-2, with no sign of photocorrosion. Paradoxically, the presence of monoclinic WO2.9 phase in the vacuum-annealed nanorods worsens the PEC behavior and stimulates the peroxo-assisted dissolution. Unexpectedly, electrochemically doping both the WO3 and WO2.9 big nanorods with TiO2 causes the photocurrent to decrease dramatically. An advanced approach developed for modeling charge transport processes in the PAA-assisted WOx nanorods predicts a 7-fold further rise in the solar current should the big nanorods grow longer (1.5 μm) and wider (300 nm) to absorb a bigger portion of light and support a thicker depletion layer, without, however, getting fully depleted, which is the case of the small nanorods.

  • Název v anglickém jazyce

    Solar water splitting on porous-alumina-assisted TiO2-doped WOx nanorod photoanodes: Paradoxes and challenges

  • Popis výsledku anglicky

    Arrays of self-organized WO3-based semiconductor nanorods are prepared from a thin W layer, W/Ti bilayer (tungsten-on-titanium), and W-10at.%Ti alloy layer via the porous-anodic-alumina (PAA)-assisted anodization at various conditions to address the radius/length ratio of~13/130 and ~70/700 nm (respectively small’ and big’ nanorods). Doping the WO3 nanorods with TiO2 was achieved, for the first time, simply by anodizing the W/Ti and W-10at.%Ti layers through the alumina nanopores. The post-anodizing treatments combined PAA dissolution with annealing in air and vacuum at 500–550 °C to alter the film composition, crystal structure, and electrical properties. The air-annealed big nanorods comprising monoclinic and triclinic WO3 crystal phases reveal their superior performance in photoelectrochemical (PEC) water splitting, showing a low onset potential (0.5 VRHE) and a competitive value of photocurrent (15.5 mA cm-2) in 0.1 mol dm-3 Na2SO4 solution (pH 5.0) under chopped illumination at a single wavelength of 405 nm, 1 W cm-2, with no sign of photocorrosion. Paradoxically, the presence of monoclinic WO2.9 phase in the vacuum-annealed nanorods worsens the PEC behavior and stimulates the peroxo-assisted dissolution. Unexpectedly, electrochemically doping both the WO3 and WO2.9 big nanorods with TiO2 causes the photocurrent to decrease dramatically. An advanced approach developed for modeling charge transport processes in the PAA-assisted WOx nanorods predicts a 7-fold further rise in the solar current should the big nanorods grow longer (1.5 μm) and wider (300 nm) to absorb a bigger portion of light and support a thicker depletion layer, without, however, getting fully depleted, which is the case of the small nanorods.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Nano Energy

  • ISSN

    2211-2855

  • e-ISSN

    2211-3282

  • Svazek periodika

    neuveden

  • Číslo periodika v rámci svazku

    33

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    16

  • Strana od-do

    72-87

  • Kód UT WoS článku

    000397314200009

  • EID výsledku v databázi Scopus

    2-s2.0-85010216155