Solar water splitting on porous-alumina-assisted TiO2-doped WOx nanorod photoanodes: Paradoxes and challenges
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F17%3APU122172" target="_blank" >RIV/00216305:26620/17:PU122172 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.nanoen.2017.01.029" target="_blank" >http://dx.doi.org/10.1016/j.nanoen.2017.01.029</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.nanoen.2017.01.029" target="_blank" >10.1016/j.nanoen.2017.01.029</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Solar water splitting on porous-alumina-assisted TiO2-doped WOx nanorod photoanodes: Paradoxes and challenges
Popis výsledku v původním jazyce
Arrays of self-organized WO3-based semiconductor nanorods are prepared from a thin W layer, W/Ti bilayer (tungsten-on-titanium), and W-10at.%Ti alloy layer via the porous-anodic-alumina (PAA)-assisted anodization at various conditions to address the radius/length ratio of~13/130 and ~70/700 nm (respectively small’ and big’ nanorods). Doping the WO3 nanorods with TiO2 was achieved, for the first time, simply by anodizing the W/Ti and W-10at.%Ti layers through the alumina nanopores. The post-anodizing treatments combined PAA dissolution with annealing in air and vacuum at 500–550 °C to alter the film composition, crystal structure, and electrical properties. The air-annealed big nanorods comprising monoclinic and triclinic WO3 crystal phases reveal their superior performance in photoelectrochemical (PEC) water splitting, showing a low onset potential (0.5 VRHE) and a competitive value of photocurrent (15.5 mA cm-2) in 0.1 mol dm-3 Na2SO4 solution (pH 5.0) under chopped illumination at a single wavelength of 405 nm, 1 W cm-2, with no sign of photocorrosion. Paradoxically, the presence of monoclinic WO2.9 phase in the vacuum-annealed nanorods worsens the PEC behavior and stimulates the peroxo-assisted dissolution. Unexpectedly, electrochemically doping both the WO3 and WO2.9 big nanorods with TiO2 causes the photocurrent to decrease dramatically. An advanced approach developed for modeling charge transport processes in the PAA-assisted WOx nanorods predicts a 7-fold further rise in the solar current should the big nanorods grow longer (1.5 μm) and wider (300 nm) to absorb a bigger portion of light and support a thicker depletion layer, without, however, getting fully depleted, which is the case of the small nanorods.
Název v anglickém jazyce
Solar water splitting on porous-alumina-assisted TiO2-doped WOx nanorod photoanodes: Paradoxes and challenges
Popis výsledku anglicky
Arrays of self-organized WO3-based semiconductor nanorods are prepared from a thin W layer, W/Ti bilayer (tungsten-on-titanium), and W-10at.%Ti alloy layer via the porous-anodic-alumina (PAA)-assisted anodization at various conditions to address the radius/length ratio of~13/130 and ~70/700 nm (respectively small’ and big’ nanorods). Doping the WO3 nanorods with TiO2 was achieved, for the first time, simply by anodizing the W/Ti and W-10at.%Ti layers through the alumina nanopores. The post-anodizing treatments combined PAA dissolution with annealing in air and vacuum at 500–550 °C to alter the film composition, crystal structure, and electrical properties. The air-annealed big nanorods comprising monoclinic and triclinic WO3 crystal phases reveal their superior performance in photoelectrochemical (PEC) water splitting, showing a low onset potential (0.5 VRHE) and a competitive value of photocurrent (15.5 mA cm-2) in 0.1 mol dm-3 Na2SO4 solution (pH 5.0) under chopped illumination at a single wavelength of 405 nm, 1 W cm-2, with no sign of photocorrosion. Paradoxically, the presence of monoclinic WO2.9 phase in the vacuum-annealed nanorods worsens the PEC behavior and stimulates the peroxo-assisted dissolution. Unexpectedly, electrochemically doping both the WO3 and WO2.9 big nanorods with TiO2 causes the photocurrent to decrease dramatically. An advanced approach developed for modeling charge transport processes in the PAA-assisted WOx nanorods predicts a 7-fold further rise in the solar current should the big nanorods grow longer (1.5 μm) and wider (300 nm) to absorb a bigger portion of light and support a thicker depletion layer, without, however, getting fully depleted, which is the case of the small nanorods.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nano Energy
ISSN
2211-2855
e-ISSN
2211-3282
Svazek periodika
neuveden
Číslo periodika v rámci svazku
33
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
72-87
Kód UT WoS článku
000397314200009
EID výsledku v databázi Scopus
2-s2.0-85010216155