Automated classification of cell morphology by coherence-controlled holographic microscopy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F17%3APU124309" target="_blank" >RIV/00216305:26620/17:PU124309 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1117/1.JBO.22.8.086008" target="_blank" >http://dx.doi.org/10.1117/1.JBO.22.8.086008</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1117/1.JBO.22.8.086008" target="_blank" >10.1117/1.JBO.22.8.086008</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automated classification of cell morphology by coherence-controlled holographic microscopy
Popis výsledku v původním jazyce
In the last few years, classification of cells by machine learning has become frequently used in biology. However, most of the approaches are based on morphometric (MO) features, which are not quantitative in terms of cell mass. This may result in poor classification accuracy. Here, we study the potential contribution of coherence-controlled holographic microscopy enabling quantitative phase imaging for the classification of cell morphologies. We compare our approach with the commonly used method based on MO features. We tested both classification approaches in an experiment with nutritionally deprived cancer tissue cells, while employing several supervised machine learning algorithms. Most of the classifiers provided higher performance when quantitative phase features were employed. Based on the results, it can be concluded that the quantitative phase features played an important role in improving the performance of the classification. The methodology could be valuable help in refining the monitoring of live cells in an automated fashion. We believe that coherencecontrolled holographic microscopy, as a tool for quantitative phase imaging, offers all preconditions for the accurate automated analysis of live cell behavior while enabling noninvasive label-free imaging with sufficient contrast and high-spatiotemporal phase sensitivity.
Název v anglickém jazyce
Automated classification of cell morphology by coherence-controlled holographic microscopy
Popis výsledku anglicky
In the last few years, classification of cells by machine learning has become frequently used in biology. However, most of the approaches are based on morphometric (MO) features, which are not quantitative in terms of cell mass. This may result in poor classification accuracy. Here, we study the potential contribution of coherence-controlled holographic microscopy enabling quantitative phase imaging for the classification of cell morphologies. We compare our approach with the commonly used method based on MO features. We tested both classification approaches in an experiment with nutritionally deprived cancer tissue cells, while employing several supervised machine learning algorithms. Most of the classifiers provided higher performance when quantitative phase features were employed. Based on the results, it can be concluded that the quantitative phase features played an important role in improving the performance of the classification. The methodology could be valuable help in refining the monitoring of live cells in an automated fashion. We believe that coherencecontrolled holographic microscopy, as a tool for quantitative phase imaging, offers all preconditions for the accurate automated analysis of live cell behavior while enabling noninvasive label-free imaging with sufficient contrast and high-spatiotemporal phase sensitivity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF BIOMEDICAL OPTICS
ISSN
1083-3668
e-ISSN
1560-2281
Svazek periodika
22
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
„ 086008-1“-„ 086008-9“
Kód UT WoS článku
000410739500014
EID výsledku v databázi Scopus
2-s2.0-85028556442