Kelvin Probe Force Microscopy and Calculation of Charge Transport in a Graphene/Silicon Dioxide System at Different Relative Humidity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F18%3APU127833" target="_blank" >RIV/00216305:26620/18:PU127833 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/70883521:28110/18:63520423 RIV/68378271:_____/18:00511229
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acsami.7b18041" target="_blank" >https://pubs.acs.org/doi/10.1021/acsami.7b18041</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsami.7b18041" target="_blank" >10.1021/acsami.7b18041</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Kelvin Probe Force Microscopy and Calculation of Charge Transport in a Graphene/Silicon Dioxide System at Different Relative Humidity
Popis výsledku v původním jazyce
The article shows how the dynamic mapping of surface potential (SP) measured by Kelvin probe force microscopy (KPFM) in combination with calculation by a diffusion-like equation and the theory based on the Brunauer− Emmett−Teller (BET) model of water condensation and electron hopping can provide the information concerning the resistivity of low conductive surfaces and their water coverage. This is enabled by a study of charge transport between isolated and grounded graphene sheets on a silicon dioxide surface at different relative humidity (RH) with regard to the use of graphene in ambient electronic circuits and especially in sensors. In the experimental part, the chemical vapor-deposited graphene is precisely patterned by the mechanical atomic force microscopy (AFM) lithography and the charge transport is studied through a surface potential evolution measured by KPFM. In the computational part, a quantitative model based on solving the diffusion-like equation for the charge transport is used to fit the experimental data and thus to find the SiO2 surface resistivity ranging from 107 to 1010 Ω and exponentially decreasing with the RH increase. Such a behavior is explained using the formation of water layers predicted by the BET adsorption theory and electron-hopping theory that for the SiO2 surface patterned by AFM predicts a high water coverage even at low RHs.
Název v anglickém jazyce
Kelvin Probe Force Microscopy and Calculation of Charge Transport in a Graphene/Silicon Dioxide System at Different Relative Humidity
Popis výsledku anglicky
The article shows how the dynamic mapping of surface potential (SP) measured by Kelvin probe force microscopy (KPFM) in combination with calculation by a diffusion-like equation and the theory based on the Brunauer− Emmett−Teller (BET) model of water condensation and electron hopping can provide the information concerning the resistivity of low conductive surfaces and their water coverage. This is enabled by a study of charge transport between isolated and grounded graphene sheets on a silicon dioxide surface at different relative humidity (RH) with regard to the use of graphene in ambient electronic circuits and especially in sensors. In the experimental part, the chemical vapor-deposited graphene is precisely patterned by the mechanical atomic force microscopy (AFM) lithography and the charge transport is studied through a surface potential evolution measured by KPFM. In the computational part, a quantitative model based on solving the diffusion-like equation for the charge transport is used to fit the experimental data and thus to find the SiO2 surface resistivity ranging from 107 to 1010 Ω and exponentially decreasing with the RH increase. Such a behavior is explained using the formation of water layers predicted by the BET adsorption theory and electron-hopping theory that for the SiO2 surface patterned by AFM predicts a high water coverage even at low RHs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS APPL MATER INTER
ISSN
1944-8244
e-ISSN
1944-8252
Svazek periodika
10
Číslo periodika v rámci svazku
14
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
11987-11994
Kód UT WoS článku
000430156000068
EID výsledku v databázi Scopus
—