On the utilization of principal component analysis in laser-induced breakdown spectroscopy data analysis, a review
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F18%3APU128293" target="_blank" >RIV/00216305:26620/18:PU128293 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.sab.2018.05.030" target="_blank" >http://dx.doi.org/10.1016/j.sab.2018.05.030</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.sab.2018.05.030" target="_blank" >10.1016/j.sab.2018.05.030</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the utilization of principal component analysis in laser-induced breakdown spectroscopy data analysis, a review
Popis výsledku v původním jazyce
An implementation of a fast, robust, and effective algorithm is inevitable in modern multivariate data analysis (MVDA). The principal component analysis (PCA) algorithm is becoming popular not only in the spectroscopic community because it complies with the qualities mentioned above. PCA is, therefore, often used for the rocessing of detected multivariate signal (characteristic spectra). Over the past decade, PCA has been adopted by the Laser-Induced Breakdown Spectroscopy (LIBS) community and the number of scientific articles referring to PCA steadily increases. The interest in PCA is not caused only by the basic need to obtain a fast data visualization on a lower dimensional scale and to inspect the most prominent variables. Most recently, PCA has also been applied to yield unconventional data analyses, i.e. processing of large scale LIBS maps. However, a rapid development of LIBS-related instrumentation and applications has led to some non-uniform methodologies in the implementation and utilization of MVDA, including PCA. Thus, in this work, we critically assess and elaborate on the approaches to utilize PCA in LIBS data processing. The aim of this article is also to derive some implications and to suggest advice in data preprocessing, visualization, dimensionality reduction, model building, classification, quantification and non-conventional multivariate mapping. This review reflects also other MVDA algorithms than PCA and consequently, presented conclusions and recommendations can be generalized.
Název v anglickém jazyce
On the utilization of principal component analysis in laser-induced breakdown spectroscopy data analysis, a review
Popis výsledku anglicky
An implementation of a fast, robust, and effective algorithm is inevitable in modern multivariate data analysis (MVDA). The principal component analysis (PCA) algorithm is becoming popular not only in the spectroscopic community because it complies with the qualities mentioned above. PCA is, therefore, often used for the rocessing of detected multivariate signal (characteristic spectra). Over the past decade, PCA has been adopted by the Laser-Induced Breakdown Spectroscopy (LIBS) community and the number of scientific articles referring to PCA steadily increases. The interest in PCA is not caused only by the basic need to obtain a fast data visualization on a lower dimensional scale and to inspect the most prominent variables. Most recently, PCA has also been applied to yield unconventional data analyses, i.e. processing of large scale LIBS maps. However, a rapid development of LIBS-related instrumentation and applications has led to some non-uniform methodologies in the implementation and utilization of MVDA, including PCA. Thus, in this work, we critically assess and elaborate on the approaches to utilize PCA in LIBS data processing. The aim of this article is also to derive some implications and to suggest advice in data preprocessing, visualization, dimensionality reduction, model building, classification, quantification and non-conventional multivariate mapping. This review reflects also other MVDA algorithms than PCA and consequently, presented conclusions and recommendations can be generalized.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Spectrochimica Acta Part B
ISSN
0584-8547
e-ISSN
—
Svazek periodika
148
Číslo periodika v rámci svazku
-
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
19
Strana od-do
65-82
Kód UT WoS článku
000445311800009
EID výsledku v databázi Scopus
2-s2.0-85048439338