Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On the utilization of principal component analysis in laser-induced breakdown spectroscopy data analysis, a review

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F18%3APU128293" target="_blank" >RIV/00216305:26620/18:PU128293 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.sab.2018.05.030" target="_blank" >http://dx.doi.org/10.1016/j.sab.2018.05.030</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.sab.2018.05.030" target="_blank" >10.1016/j.sab.2018.05.030</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On the utilization of principal component analysis in laser-induced breakdown spectroscopy data analysis, a review

  • Popis výsledku v původním jazyce

    An implementation of a fast, robust, and effective algorithm is inevitable in modern multivariate data analysis (MVDA). The principal component analysis (PCA) algorithm is becoming popular not only in the spectroscopic community because it complies with the qualities mentioned above. PCA is, therefore, often used for the rocessing of detected multivariate signal (characteristic spectra). Over the past decade, PCA has been adopted by the Laser-Induced Breakdown Spectroscopy (LIBS) community and the number of scientific articles referring to PCA steadily increases. The interest in PCA is not caused only by the basic need to obtain a fast data visualization on a lower dimensional scale and to inspect the most prominent variables. Most recently, PCA has also been applied to yield unconventional data analyses, i.e. processing of large scale LIBS maps. However, a rapid development of LIBS-related instrumentation and applications has led to some non-uniform methodologies in the implementation and utilization of MVDA, including PCA. Thus, in this work, we critically assess and elaborate on the approaches to utilize PCA in LIBS data processing. The aim of this article is also to derive some implications and to suggest advice in data preprocessing, visualization, dimensionality reduction, model building, classification, quantification and non-conventional multivariate mapping. This review reflects also other MVDA algorithms than PCA and consequently, presented conclusions and recommendations can be generalized.

  • Název v anglickém jazyce

    On the utilization of principal component analysis in laser-induced breakdown spectroscopy data analysis, a review

  • Popis výsledku anglicky

    An implementation of a fast, robust, and effective algorithm is inevitable in modern multivariate data analysis (MVDA). The principal component analysis (PCA) algorithm is becoming popular not only in the spectroscopic community because it complies with the qualities mentioned above. PCA is, therefore, often used for the rocessing of detected multivariate signal (characteristic spectra). Over the past decade, PCA has been adopted by the Laser-Induced Breakdown Spectroscopy (LIBS) community and the number of scientific articles referring to PCA steadily increases. The interest in PCA is not caused only by the basic need to obtain a fast data visualization on a lower dimensional scale and to inspect the most prominent variables. Most recently, PCA has also been applied to yield unconventional data analyses, i.e. processing of large scale LIBS maps. However, a rapid development of LIBS-related instrumentation and applications has led to some non-uniform methodologies in the implementation and utilization of MVDA, including PCA. Thus, in this work, we critically assess and elaborate on the approaches to utilize PCA in LIBS data processing. The aim of this article is also to derive some implications and to suggest advice in data preprocessing, visualization, dimensionality reduction, model building, classification, quantification and non-conventional multivariate mapping. This review reflects also other MVDA algorithms than PCA and consequently, presented conclusions and recommendations can be generalized.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Spectrochimica Acta Part B

  • ISSN

    0584-8547

  • e-ISSN

  • Svazek periodika

    148

  • Číslo periodika v rámci svazku

    -

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    19

  • Strana od-do

    65-82

  • Kód UT WoS článku

    000445311800009

  • EID výsledku v databázi Scopus

    2-s2.0-85048439338