Precise determination of thermal parameters of a microbolometer
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F18%3APU128566" target="_blank" >RIV/00216305:26620/18:PU128566 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1350449518303049" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1350449518303049</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.infrared.2018.07.037" target="_blank" >10.1016/j.infrared.2018.07.037</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Precise determination of thermal parameters of a microbolometer
Popis výsledku v původním jazyce
Determination of microbolometer thermal properties such as thermal capacitance, conductance, time constant, and IR responsivity is of the utmost importance as they directly influence microbolometer performance. Here we show a technique to measure them by using a minimized self-heating effect, thus leading to their precise determination via measurements based on an AC-biased Wheatstone bridge containing a microbolometer. The bridge outputs were subtracted from each other by a differential voltage preamplifier with its output processed by a lock-in amplifier. The lock-in amplifier output as a function of the amplitude of AC bias provided an amplitude of microbolometer thermal conductivity. A microbolometer temperature response to pulse irradiation of its membrane provided the value of its thermal time constant and, thus, its thermal capacitance. Finally, we also extracted microbolometer responsivity using a blackbody IR source. The method was experimentally verified using a micromachined bolometer, which showed excellent agreement with the analytical solution.
Název v anglickém jazyce
Precise determination of thermal parameters of a microbolometer
Popis výsledku anglicky
Determination of microbolometer thermal properties such as thermal capacitance, conductance, time constant, and IR responsivity is of the utmost importance as they directly influence microbolometer performance. Here we show a technique to measure them by using a minimized self-heating effect, thus leading to their precise determination via measurements based on an AC-biased Wheatstone bridge containing a microbolometer. The bridge outputs were subtracted from each other by a differential voltage preamplifier with its output processed by a lock-in amplifier. The lock-in amplifier output as a function of the amplitude of AC bias provided an amplitude of microbolometer thermal conductivity. A microbolometer temperature response to pulse irradiation of its membrane provided the value of its thermal time constant and, thus, its thermal capacitance. Finally, we also extracted microbolometer responsivity using a blackbody IR source. The method was experimentally verified using a micromachined bolometer, which showed excellent agreement with the analytical solution.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-20716S" target="_blank" >GA17-20716S: Vysoce přesné mapování vnitřní teploty a energetická balance živých buněk</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INFRARED PHYSICS & TECHNOLOGY
ISSN
1350-4495
e-ISSN
1879-0275
Svazek periodika
93
Číslo periodika v rámci svazku
NA
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
5
Strana od-do
286-290
Kód UT WoS článku
000446283400042
EID výsledku v databázi Scopus
2-s2.0-85051632648