Numerical Solution of Fractional Control Problems via Fractional Differential Transformation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F18%3APU128931" target="_blank" >RIV/00216305:26620/18:PU128931 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/EECS.2017.29" target="_blank" >http://dx.doi.org/10.1109/EECS.2017.29</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/EECS.2017.29" target="_blank" >10.1109/EECS.2017.29</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Numerical Solution of Fractional Control Problems via Fractional Differential Transformation
Popis výsledku v původním jazyce
In the paper we deal with linear fractional control problems with constant delays in the state. Single-order systems with fractional derivative in Caputo sense of orders between 0 and 1 are considered. The aim is to introduce a new algorithm convenient for numerical approximation of a solution of the studied problem. The method consists of the fractional differential transformation in combination with general methods of steps. The original system is transformed to a system of recurrence relations. Approximation of the solution is given in the form of truncated fractional power series. The choice of order of the fractional power series is discussed and the order is determined in relation to the order of the system. An application on a two-dimensional fractional system is shown. Exact solution is found for the first two intervals of the method of steps. The result for Caputo derivative of order 1 coincides with the solution of first-order system with classical derivative. We conclude that the algorithm is applicable, efficient and gives reliable results.
Název v anglickém jazyce
Numerical Solution of Fractional Control Problems via Fractional Differential Transformation
Popis výsledku anglicky
In the paper we deal with linear fractional control problems with constant delays in the state. Single-order systems with fractional derivative in Caputo sense of orders between 0 and 1 are considered. The aim is to introduce a new algorithm convenient for numerical approximation of a solution of the studied problem. The method consists of the fractional differential transformation in combination with general methods of steps. The original system is transformed to a system of recurrence relations. Approximation of the solution is given in the form of truncated fractional power series. The choice of order of the fractional power series is discussed and the order is determined in relation to the order of the system. An application on a two-dimensional fractional system is shown. Exact solution is found for the first two intervals of the method of steps. The result for Caputo derivative of order 1 coincides with the solution of first-order system with classical derivative. We conclude that the algorithm is applicable, efficient and gives reliable results.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-08549S" target="_blank" >GA16-08549S: Identifikace dynamických systémů na časových škálách</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of European Conference on Electrical Engineering and Computer Science 2017
ISBN
978-1-5386-2085-4
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
107-111
Název nakladatele
Neuveden
Místo vydání
Neuveden
Místo konání akce
Bern
Datum konání akce
17. 11. 2017
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000455867600021