Comparison of different approaches to continuous-time system identification from sampled data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F18%3APU129119" target="_blank" >RIV/00216305:26620/18:PU129119 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/EECS.2017.21" target="_blank" >http://dx.doi.org/10.1109/EECS.2017.21</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/EECS.2017.21" target="_blank" >10.1109/EECS.2017.21</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of different approaches to continuous-time system identification from sampled data
Popis výsledku v původním jazyce
This article deals with different approaches to continuous-time system identification from sampled data. Continuous-time system identification is important problem in control theory. Continuous time models provide many advantages against discrete time models because of better physical insight into the system properties. The traditional approach with least squares method with state variable filters is presented. Two alternative approaches to continuous-time identification are proposed. The generalized Laguerre functions method and the method based on least squares estimation with numerical solution of differential equation are introduced. These three different approaches to continuous-time system identification from sampled data are compared on the example. It is shown that proposed alternative methods can give better results in terms of relative root mean square error of the outputs of the identified systems than the least squares method with state variable filters.
Název v anglickém jazyce
Comparison of different approaches to continuous-time system identification from sampled data
Popis výsledku anglicky
This article deals with different approaches to continuous-time system identification from sampled data. Continuous-time system identification is important problem in control theory. Continuous time models provide many advantages against discrete time models because of better physical insight into the system properties. The traditional approach with least squares method with state variable filters is presented. Two alternative approaches to continuous-time identification are proposed. The generalized Laguerre functions method and the method based on least squares estimation with numerical solution of differential equation are introduced. These three different approaches to continuous-time system identification from sampled data are compared on the example. It is shown that proposed alternative methods can give better results in terms of relative root mean square error of the outputs of the identified systems than the least squares method with state variable filters.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2017 European Conference on Electrical Engineering and Computer Science (EECS) (2017)
ISBN
978-1-5386-2085-4
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
61-65
Název nakladatele
Neuveden
Místo vydání
Neuveden
Místo konání akce
Bern
Datum konání akce
17. 11. 2017
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000455867600013