Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Periodic chiral magnetic domains in single-crystal nickel nanowires

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F18%3APU129820" target="_blank" >RIV/00216305:26620/18:PU129820 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1103/PhysRevMaterials.2.064406" target="_blank" >http://dx.doi.org/10.1103/PhysRevMaterials.2.064406</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevMaterials.2.064406" target="_blank" >10.1103/PhysRevMaterials.2.064406</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Periodic chiral magnetic domains in single-crystal nickel nanowires

  • Popis výsledku v původním jazyce

    We report on experimental and computational investigations of the domain structure of single-crystal Ni nanowires (NWs). The similar to 200x200x8000 nm(3) Ni NWs were grown by a thermal chemical vapor deposition technique that results in single-crystal structures. Magneto resistance measurements of individual NWs suggest the average magnetization points largely off the NW long axis at zero field. X-ray photo emission electronmicroscopy images obtained at room temperature show a well-defined periodic magnetization pattern along the surface of the nanowires with a period of lambda(avg) = 239 +/- 37 nm. Finite element micromagnetic simulations reveal that when the material parameters of the modeled system match those of nickel crystal at T = 10 K, an oscillatory magnetization configuration with a period closely matching experimental observation (lambda = 222 nm) is obtainable at remanence. This magnetization configuration involves a periodic array of alternating chirality vortex domains distributed along the length of the NW. Vortex formation is attributable to the relatively high cubic anisotropy of the single crystal Ni NW system at T = 10 K and its reduced structural dimensions. The periodic alternating chirality vortex state is a topologically protected metastable state, analogous to an array of 360 degrees domain walls in a thin strip. Simulations show that other remanent states are also possible, depending on the field history. At room temperature (T = 273 K), simulations show vortices are no longer stable due to the expected reduced cubic anisotropy of the system, suggesting a disparity between the fabricated and modeled nanowires. Negative uniaxial anisotropy and magnetoelastic effects in the presence of compressive biaxial strain are shown to promote and restore formation of vortices at room temperature.

  • Název v anglickém jazyce

    Periodic chiral magnetic domains in single-crystal nickel nanowires

  • Popis výsledku anglicky

    We report on experimental and computational investigations of the domain structure of single-crystal Ni nanowires (NWs). The similar to 200x200x8000 nm(3) Ni NWs were grown by a thermal chemical vapor deposition technique that results in single-crystal structures. Magneto resistance measurements of individual NWs suggest the average magnetization points largely off the NW long axis at zero field. X-ray photo emission electronmicroscopy images obtained at room temperature show a well-defined periodic magnetization pattern along the surface of the nanowires with a period of lambda(avg) = 239 +/- 37 nm. Finite element micromagnetic simulations reveal that when the material parameters of the modeled system match those of nickel crystal at T = 10 K, an oscillatory magnetization configuration with a period closely matching experimental observation (lambda = 222 nm) is obtainable at remanence. This magnetization configuration involves a periodic array of alternating chirality vortex domains distributed along the length of the NW. Vortex formation is attributable to the relatively high cubic anisotropy of the single crystal Ni NW system at T = 10 K and its reduced structural dimensions. The periodic alternating chirality vortex state is a topologically protected metastable state, analogous to an array of 360 degrees domain walls in a thin strip. Simulations show that other remanent states are also possible, depending on the field history. At room temperature (T = 273 K), simulations show vortices are no longer stable due to the expected reduced cubic anisotropy of the system, suggesting a disparity between the fabricated and modeled nanowires. Negative uniaxial anisotropy and magnetoelastic effects in the presence of compressive biaxial strain are shown to promote and restore formation of vortices at room temperature.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    PHYSICAL REVIEW MATERIALS

  • ISSN

    2475-9953

  • e-ISSN

  • Svazek periodika

    2

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    8

  • Strana od-do

    „064406-1“-„064406-8“

  • Kód UT WoS článku

    000435449700002

  • EID výsledku v databázi Scopus