Processing of large-scale laser spectroscopy data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F18%3APU130618" target="_blank" >RIV/00216305:26620/18:PU130618 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Processing of large-scale laser spectroscopy data
Popis výsledku v původním jazyce
State-of-the-art laser-ablation based spectroscopic instruments provide data sets with increasing size, number of objects (spectra) and variables (wavelengths). In this work we concentrate namely on the Optical Emission Spectroscopic techniques, such as Laser-Induced Breakdown Spectroscopy and Laser Ablation Inductively Plasma Optical Emission Spectroscopy. However, presented algorithms are applicable also to the Mass Spec techniques. Typically, the data set is overloaded with information, analytically relevant as well as redundant, e.g. originating from noise and background. Processing such multivariate data is, thus, a challenging task demanding sophisticated approaches. A use of advanced statistical algorithms, referred to as multivariate data analysis algorithms or chemometrics, is of great interest in the contemporary data processing. Most often Principal Component Analysis and Self-Organizing Maps are implemented. Our efforts tackled mainly the dimensionality reduction in both, objects and varia
Název v anglickém jazyce
Processing of large-scale laser spectroscopy data
Popis výsledku anglicky
State-of-the-art laser-ablation based spectroscopic instruments provide data sets with increasing size, number of objects (spectra) and variables (wavelengths). In this work we concentrate namely on the Optical Emission Spectroscopic techniques, such as Laser-Induced Breakdown Spectroscopy and Laser Ablation Inductively Plasma Optical Emission Spectroscopy. However, presented algorithms are applicable also to the Mass Spec techniques. Typically, the data set is overloaded with information, analytically relevant as well as redundant, e.g. originating from noise and background. Processing such multivariate data is, thus, a challenging task demanding sophisticated approaches. A use of advanced statistical algorithms, referred to as multivariate data analysis algorithms or chemometrics, is of great interest in the contemporary data processing. Most often Principal Component Analysis and Self-Organizing Maps are implemented. Our efforts tackled mainly the dimensionality reduction in both, objects and varia
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10406 - Analytical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů