Interfacing a Potential Purely Organic Molecular Quantum Bit with a Real-Life Surface
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F19%3APU132396" target="_blank" >RIV/00216305:26620/19:PU132396 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/abs/10.1021/acsami.8b16061" target="_blank" >https://pubs.acs.org/doi/abs/10.1021/acsami.8b16061</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsami.8b16061" target="_blank" >10.1021/acsami.8b16061</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Interfacing a Potential Purely Organic Molecular Quantum Bit with a Real-Life Surface
Popis výsledku v původním jazyce
By using a multidisciplinary and multitechnique approach, we have addressed the issue of attaching a molecular quantum bit to a real surface. First, we demonstrate that an organic derivative of the pyrene-Blatter radical is a potential molecular quantum bit. Our study of the interface of the pyrene-Blatter radical with a copper-based surface reveals that the spin of the interface layer is not canceled by the interaction with the surface and that the Blatter radical is resistant in presence of molecular water. Although the measured pyrene-Blatter derivative quantum coherence time is not the highest value known, this molecule is known as a "super stable" radical. Conversely, other potential qubits show poor thin film stability upon air exposure. Therefore, we discuss strategies to make molecular systems candidates as qubits competitive, bridging the gap between potential and real applications.
Název v anglickém jazyce
Interfacing a Potential Purely Organic Molecular Quantum Bit with a Real-Life Surface
Popis výsledku anglicky
By using a multidisciplinary and multitechnique approach, we have addressed the issue of attaching a molecular quantum bit to a real surface. First, we demonstrate that an organic derivative of the pyrene-Blatter radical is a potential molecular quantum bit. Our study of the interface of the pyrene-Blatter radical with a copper-based surface reveals that the spin of the interface layer is not canceled by the interaction with the surface and that the Blatter radical is resistant in presence of molecular water. Although the measured pyrene-Blatter derivative quantum coherence time is not the highest value known, this molecule is known as a "super stable" radical. Conversely, other potential qubits show poor thin film stability upon air exposure. Therefore, we discuss strategies to make molecular systems candidates as qubits competitive, bridging the gap between potential and real applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS applied materials & interfaces
ISSN
1944-8244
e-ISSN
1944-8252
Svazek periodika
11
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
1571-1578
Kód UT WoS článku
000455561200169
EID výsledku v databázi Scopus
—