The ab-initio aided strain gradient elasticity theory: a new concept for fracture nanomechanics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F19%3APU134707" target="_blank" >RIV/00216305:26620/19:PU134707 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.fracturae.com/index.php/fis/article/view/2503" target="_blank" >https://www.fracturae.com/index.php/fis/article/view/2503</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3221/IGF-ESIS.49.11" target="_blank" >10.3221/IGF-ESIS.49.11</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The ab-initio aided strain gradient elasticity theory: a new concept for fracture nanomechanics
Popis výsledku v původním jazyce
When the width of cracked nanocomponents made of brittle or quasi-brittle materials is less than approximately 10nm, the size of the K - dominance zone becomes smaller than 2 - 3nm and comparable to the fracture process zone (0.4 - 0.6nm). The fracture process starts to be dominated by far-stress field terms and the critical stress intensity factor can no more represent the total fracture driving force. This means a breakdown of a classical linear elastic fracture mechanics suffering from the undesirable crack-tip stress singularity. The contribution presents a new concept expected to properly predict the critical crack driving force for nano-components: The ab-initio aided strain gradient elasticity theory (AI-SG ET). In contrast to the Barenblatt cohesive model, the strain gradient elasticity theory does not require to prescribe a suitable field of cohesive tractions along the crack faces in order to eliminate the stress singularity and to exhibit cusp-like profiles of crack flanks close to the crack front in accordance with atomistic models. The only unknown and necessary quantity is the material length scale parameter which can be, e.g., determined by best strain gradient elasticity fits of ab-initio computed phonon-dispersions and near-dislocation displacement fields. Atomistic approaches can also be employed to determine fracture mechanical parameters (crack driving force, crack tip opening displacement) related to the moment of crack instability in a given material. Such AI-SGET codes can then be utilized to a successful prediction of fracture of cracked nanocomponents made of brittle or quasi-brittle materials.
Název v anglickém jazyce
The ab-initio aided strain gradient elasticity theory: a new concept for fracture nanomechanics
Popis výsledku anglicky
When the width of cracked nanocomponents made of brittle or quasi-brittle materials is less than approximately 10nm, the size of the K - dominance zone becomes smaller than 2 - 3nm and comparable to the fracture process zone (0.4 - 0.6nm). The fracture process starts to be dominated by far-stress field terms and the critical stress intensity factor can no more represent the total fracture driving force. This means a breakdown of a classical linear elastic fracture mechanics suffering from the undesirable crack-tip stress singularity. The contribution presents a new concept expected to properly predict the critical crack driving force for nano-components: The ab-initio aided strain gradient elasticity theory (AI-SG ET). In contrast to the Barenblatt cohesive model, the strain gradient elasticity theory does not require to prescribe a suitable field of cohesive tractions along the crack faces in order to eliminate the stress singularity and to exhibit cusp-like profiles of crack flanks close to the crack front in accordance with atomistic models. The only unknown and necessary quantity is the material length scale parameter which can be, e.g., determined by best strain gradient elasticity fits of ab-initio computed phonon-dispersions and near-dislocation displacement fields. Atomistic approaches can also be employed to determine fracture mechanical parameters (crack driving force, crack tip opening displacement) related to the moment of crack instability in a given material. Such AI-SGET codes can then be utilized to a successful prediction of fracture of cracked nanocomponents made of brittle or quasi-brittle materials.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-18566S" target="_blank" >GA17-18566S: Kombinace atomistických modelů s teorií elasticity vyššího řádu v lomové nanomechanice</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Frattura ed Integrita Strutturale
ISSN
1971-8993
e-ISSN
—
Svazek periodika
neuveden
Číslo periodika v rámci svazku
49
Stát vydavatele periodika
IT - Italská republika
Počet stran výsledku
8
Strana od-do
107-114
Kód UT WoS článku
000487285000010
EID výsledku v databázi Scopus
—