Ab initio aided strain gradient elasticity theory in prediction of nanocomponent fracture
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F19%3A00509680" target="_blank" >RIV/68081723:_____/19:00509680 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26620/19:PU132295
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0167663619300341?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167663619300341?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.mechmat.2019.103074" target="_blank" >10.1016/j.mechmat.2019.103074</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Ab initio aided strain gradient elasticity theory in prediction of nanocomponent fracture
Popis výsledku v původním jazyce
The aim of the paper is to address fracture problems in nanoscale-sized cracked components using a simplified form of the strain gradient elasticity theory aided by ab initio calculations. Quantification of the material length scale parameter l(1) of the simplified form of the strain gradient elasticity theory plays a key role in the analysis. The parameter l(1) is identified for silicon and tungsten single crystals using first principles calculations. Specifically, the parameter l(1) is extracted from phonon-dispersions generated by ab-initio calculations and, for comparison, by adjusting the analytical strain gradient elasticity theory solution for the displacement field near the screw dislocation with the ab-initio calculations of this field. The obtained results are further used in the strain gradient elasticity modeling of crack stability in nano-panels made of silicon and tungsten single crystals, where due to size effects and nonlocal material point interactions the classical linear fracture mechanics breaks down. The cusp-like crack tip opening profiles determined by the gradient elasticity theory and a hybrid atomistic approach at the moment of nano-panels fracture revealed a very good mutual agreement.
Název v anglickém jazyce
Ab initio aided strain gradient elasticity theory in prediction of nanocomponent fracture
Popis výsledku anglicky
The aim of the paper is to address fracture problems in nanoscale-sized cracked components using a simplified form of the strain gradient elasticity theory aided by ab initio calculations. Quantification of the material length scale parameter l(1) of the simplified form of the strain gradient elasticity theory plays a key role in the analysis. The parameter l(1) is identified for silicon and tungsten single crystals using first principles calculations. Specifically, the parameter l(1) is extracted from phonon-dispersions generated by ab-initio calculations and, for comparison, by adjusting the analytical strain gradient elasticity theory solution for the displacement field near the screw dislocation with the ab-initio calculations of this field. The obtained results are further used in the strain gradient elasticity modeling of crack stability in nano-panels made of silicon and tungsten single crystals, where due to size effects and nonlocal material point interactions the classical linear fracture mechanics breaks down. The cusp-like crack tip opening profiles determined by the gradient elasticity theory and a hybrid atomistic approach at the moment of nano-panels fracture revealed a very good mutual agreement.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20303 - Thermodynamics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-18566S" target="_blank" >GA17-18566S: Kombinace atomistických modelů s teorií elasticity vyššího řádu v lomové nanomechanice</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mechanics of Materials
ISSN
0167-6636
e-ISSN
—
Svazek periodika
136
Číslo periodika v rámci svazku
SEP
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
103074
Kód UT WoS článku
000477685800014
EID výsledku v databázi Scopus
2-s2.0-85067312712