Benchmarking in Laser-Induced Breakdown Spectroscopy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F20%3APU137844" target="_blank" >RIV/00216305:26620/20:PU137844 - isvavai.cz</a>
Výsledek na webu
<a href="http://icpinformation.org/Winter_Conference.html" target="_blank" >http://icpinformation.org/Winter_Conference.html</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Benchmarking in Laser-Induced Breakdown Spectroscopy
Popis výsledku v původním jazyce
The recent technological boom in LIBS resulted in the production of very large spectroscopic data.1 Various processing techniques and methods have been developed over time with ranging applicability and performance. Well-established algorithms based on classical statistics are not anymore usable for more advanced processing of large high-dimensional data. On the other side, modern Machine Learning techniques (Neural Networks, Support Vector Machines, etc.) are very often overused or applied in an incorrect way. Establishing a robust benchmark for a specific task (classification or quantification,...) is necessary to distinguish between approaches and select a “correct” solution/s to each problem. We are presenting a challenging benchmark for material classification through LIBS spectra. It consists of 138 physical samples, separated into 12 categories according to their elemental composition. For each sample 500 spectra of dimension 40,002 wavelength values are available (in training part of the datas
Název v anglickém jazyce
Benchmarking in Laser-Induced Breakdown Spectroscopy
Popis výsledku anglicky
The recent technological boom in LIBS resulted in the production of very large spectroscopic data.1 Various processing techniques and methods have been developed over time with ranging applicability and performance. Well-established algorithms based on classical statistics are not anymore usable for more advanced processing of large high-dimensional data. On the other side, modern Machine Learning techniques (Neural Networks, Support Vector Machines, etc.) are very often overused or applied in an incorrect way. Establishing a robust benchmark for a specific task (classification or quantification,...) is necessary to distinguish between approaches and select a “correct” solution/s to each problem. We are presenting a challenging benchmark for material classification through LIBS spectra. It consists of 138 physical samples, separated into 12 categories according to their elemental composition. For each sample 500 spectra of dimension 40,002 wavelength values are available (in training part of the datas
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10406 - Analytical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů